A quick introduction to

TTCn-3)

Chapter 1: basics

* Common TTCN Concepts
* TTCN language(s)
* TTCN-3 new capabilities

Context: Origin of the TTCN languages

* Strong need to test telecom systems (protocol implementations) for
conformance and interoperability

* All telecom systems should be tested the same way

* Development cycles become shorter and shorter
— Testing process needs to be efficient, e.g. automated

* Similar products are needed for different customers
— Call for tests that can be adapted easily to different product versions

° Broad spectrum of different test hardware with similar functionality
— Need for abstract tests, independent from test hardware

Context: Origin of the TTCN languages

Issues with manual testing:
* Manual testing is labor-intensive, unattended testing is impossible

— Testers need to work hard ©

* Frequent testing is time-consuming

— Tests are executed less often than would be required

¢ Different testers execute tests differently

— Results of tests are not always reproducible

¢ Controlling complex tests is difficult
— Deciphering test results is complex

— Understanding test results is imprecise

Context: Origin of the TTCN languages

° In the context of the OSI model, ISO developped a method for
conformance testing: ISO 9646

* ISO 9646-3 endorsed a test language for conformance testing of
protocol implementations, initialy developped in Sweden, called
TTCN: Tree and Tabular Combined Notation.

* TTCN had severe limitations, which quickly led to the development
of a revision called TTCN 2

* TTCN is still massively used today to test GSM, GPRS, EDGE and
UMTS telecom systems (mobile and infrastructure)

° In the 90s, ISO lost interest in testing, and the focus moved to
ETSI/MTS

Context: Origin of the TTCN languages

* ETSI/MTS developped a brand new test language called TTCN-3
(Test and Test Control Notation), based on the same principles as
early TTCN 1 and 2, with a totally different syntax... and

* Not specific to the telecom world, so that it could be adopted by
other industries (in particular the ones using datalinks, buses...)
* ETSI/MTS now provides:
— The TTCN-3 language,
— Protocol standards (LTE, IN),
— Conformance test suites (LTE, IN, Wimax, IP v6...)

TTCN history

First 1995: TTCN- 1999: TTCN-3 2001: TTCN-3 2005: TTCN-3
discussions 1 work initialized standardized ~ Version 3.1.1
took place standardized launched
1984
. 1997: TTCN-2 2000: TTCN-3 2007: TTCN-3
1994: all 7 parts of the standardized approved and 2003: TTCN-3 Version 3.2.1
Conformapce_Testlng launched Version 2.1.1
standard finalized, minor

except TTCN-1 improvements

Context: telecom + automotive

® The automotive industry had shown interest for the TTCN
ecosystem in the 90s.

® So: the lead author of TTCN made sure, when designing TTCN-3,
that it would also meet the requirements of the automotive industry

* The AUTOSAR consortium (http://www.autosar.org) has reproduced
in the automotive industry the ETSI+TTCN ecosystem: they provide
standards as well as conformance test suites

AUTOSAR Software Architecture
Components and Interfaces

_Software Software UTOS Software.
ASl‘JOf(' i‘:f:}R

AUTOSAR Runtime Environment{RTE)

Abstraction
ol

| o

Abstraction

Basic Software

ECU-Hardware

Chapter 1 : basics

* Context

* TTCN language(s)
* TTCN-3 new capabilities

The Nature of TTCN

® The one(s) and only standardized test languages (see next page)

¢ Ideal for black box testing

* Formal: executable

* target-independent : test any hardware or software by sending and
receiving messages

* High abstraction level which enables reusability

* modularity

* data & behaviour separated

° languages with explicit and unique functionality for test (see next
page)

* Enables parallel test components

* Includes ASN.1 for powerful test data definition

* Makes test script well documented and easy to read

TTCN: the standards

TTCN vs. Programming Languages

* Tests focus only on implementation to be tested
° Rich type system including native list types and support for subtyping
* Embodies powerful built-in matching mechanism

° Snapshot semantics, i.e., well defined handling of port and timeout
queues during their access

* Concept of verdicts and a verdict resolution mechanism
* Support for specification of concurrent test behaviour

* Support for timers

* Allows test configuration at run-time (TTCN-3 only)

* Offers potential for reducing training and test maintenance costs
significantly

* Proven to work in very large and complex industrial tests, e.g., of 3G
network elements

Portability: Focus on writing of the test cases

What ?
» Write the behavior of the test cases (test objective)
How ?
» Write the way to execute the test cases
(communication, timers, encoding/decoding of messages)

General programming Language TTCN symbols

Automatic

’ DD

generated

Wlodul=s cod ANSI
Definitions |:§ C Code

Motz Cosjirel

General language TTCN test cases

test cases

Adaptor

TTCN is for black box testing

Test the behaviour of
an implementation
by
sending & receiving

messages send

e
receive

Black Box Testing

® The Tester has no Information about the internals of the System
Under Test (SUT)

* Tests are designed along the Specification / the Requirements

* Tests are executed by stimulation of the Interfaces of the SUT and
observing / checking the response

¢ ,Test-Coverage“ means the Parts of the Specification, which is
checked by testcases

Concurrent TTCN: Distributed execution

IV aSter

JiEST

Pijel 7 I:itlel
Test C onent Test Cqmiponent Test ponent Test

Systeminderslest

TTCN: adaptation layer

* Both TTCN 2 and TTCN-3 are abstract languages: they make no
assumption about the test platform, and the way the tester is
interfaced to the SUT

® There must be an adaptation layer between the abstract test suite
and the SUT

® The user provides the code for this adaptation layer

* The TTCN compiler generates C code form the TTCN ATS. This C
code integrated with the user-provided adaptation layer make the
ETS.

The Integration Process

Executable Test Suite Test l\‘/l/anager

TTCN

. Bluelini -[0]

[iorosof t(R) Windows NICTHD
<C Copyright 1985-1996 Microsoft Corp.

C:\Progran Files\Comon Files\System\HapisiB3iNI>.

%, Tedt Caves
£ (@ INQUIRY
{2 TC_INQUIRY_IND
[0 TC_INQUIRY_IND_SCAN
PAGING

Sequence:

i Design test

A C Code Generation
& Add Integration

& Compile ETS

&4 Test Manager

20

The TTCN-3 adaptation layer: standardized interface

* A standardized adaptation helps the test implementors to develop
communication and timing with the target/SUT faster

° Code produced by any compiler using the TRI interface can be run
on all environments/test devices using the TRI interface

° The TRI interface is independant of the target

— Platform, implementation language and environment

Building stones of TRI

Executable Test Suite Generation

=il
1 62 o o 1t s
|oeEa|ieex -~

TTCNto C
compiler

2

Encoding

ANSI C code + adaptation skeleton

1

Definition of
target

23

and communication

decoding (TCP/IP, USB,
functions RS232, ...)
Compilation
[]
21 22
How do | get my test to work against my system? Chapter 1 : basics
- ASN.1 * Context

cocens
Leso® ceq

“-+*" Executable Test Suité"._
&5 (ETS)

4
S
&
kol
3
.J
.
o®

Cee, .
®ecccec®

Sequence:
kA Design test

i1 C Code Generation

eee0®000,
o®

& Add Glue ware + Encoders e
& Compile ETS %

E Execute against SUT Se :

.. o®

. o®
. .
®tececccsc®

System
under test
(SUT)

24

® Common TTCN Concepts

* TTCN-3 new capabilities

Tree and Tabular Combined Notation

Execution way

A Priority of A

alternative B

Event tree

) E

Time

25

In TTCN 2:

In TTCN-3:

26

TTCN: how they look

The way you will express it:

lir|Label] | Constraints | Verdict
1 fry_PCCIA START RetranaTimer Conet_A1
2 my_PCOTE START RetransTimer conat_B1
3 my_PCOTC CANCEL RelransTmer const_C1 |INCONC
4 my_PCO?0 CANCEL RefransTimer const D1 |PASS
5 my_PCOTE CANCEL RetransTimer
B my_PCOIF1 START RetransTmer conat_F1
7 iy PCO?G CANCEL RetransTimer const G |PASS
a my_PCO7H CANCEL RetransTimer const HI [INCONC
testoase TC 1{) runs on HodeType (|
wvar default v DefaultHandler := sctivace (def ErrorHandling());

timer RetransTimer := RETRAN TIMER;
wy_peo.send(cemp A1) ; //send message to the SUT

RetransTimer.start:
alt {
[1 my_peo.receive(temp_Bl) {

RetransTimer.start;
alt {

[1 my peo.receive (tewmp C1)
[1 my peo.receive (tewp D1)

[1 my_peo.receive(temp_E1) {

my_peo.senditemp_F1);
RetransTimer.start
alt

[1 my peo.receive (tewp G1)
[1 my peo.receive (tewp H1)

/fgetting the retransmission timer

{RetransTimer.stop; secverdict|incone);}
{RetransTimer.stop; setverdict|pass);}

{RetransTimer.stop; setverdict|pass);}
{RetransTimer.stop; secverdict|incone);}

TTCN: messages
TTCN 2.GR : definition of ASPs

#-f PCO Declarations S
[Coordination Peint Declarations a
& Timer Decl B in compa example
[Test Comp A omparison [examp
T,y Test Compy
=Ty ASP Type
=Ty TTCN

A5P Mame| B
FCO Typs |PCO_typet
Comments

ASP Name

ASP Name| &
PCO Type |PCO_typet
Comments

PCO Type |PCO_typet
Comments

|Parameter Hame|Parameter Type|

|Parameter Hame|Parameter Type|
[INTEGER

pl INTEGER

e |Parameter Name| Par.

mc
@o Pl INTEGER

@7, PDU Type

TTCN-3 (types) :

type integer
type integer
type integer
type integer
type integer
type integer
type integer
type integer

g

I oTMED O e

27

TTCN: valuation of messages

TTCN 2.GR : definition of constraints

L P L
[Alias Definitions
=T Constraints Part
Ty Test Suite Type Cor

=T, ASP Constraint Dec) Constraint Name const_A1 Constrairt Name|const_B1 Constraint Mame|const_C1
=B, TTCH ASP Cans [oor 1908 - LSP Type B LEP Type c
[const_ay ||| Derivation Pain Derivation Fath Derivation Path
I const_pa [|Comnents Comments
const_C1
% const_D1 | Parameter Name | Parameter Value |Parameter | Value | | Value
&3 const_F1 |1 1 = RG] ol 0
@ const_F1
fd const_G1 =] S 3
[const_H ||| €] — = == —
2, ASM.1 ASP Can| = = | Detailed Comments| Detailed Comments|
S0 ORI rnehrsink racl et COMMETts] E

TTCN-3: definition of templates

template integer
template integer
template integer
template integer
template integer
template integer
template integer
template integer

28

temp_A1
temp_B1
temp_C1
temp_D1
temp_E1
temp_F1
temp_G1
temp_H1

L8

.10} ;

B

Chapter 1 : basics

* Context
* Common TTCN Concepts
* TTCN language(s)

29

30

New features have been introduced in TTCN-3:

* TTCN-3 adds new features which broaden the scope of
applications that may be tested:

— New communication paradigm: procedure-based
— Allows dynamic test configurations

— Controlling test case execution possible

— Standardized Target Adaptation Interfaces

* TTCN-2 knowledge is preserved
— Testing Concepts of TTCN-2 are also used in TTCN-3

Test Control Notation

It was not possible in TTCN 2 to chain the execution of several test
cases. The controlled execution of several test cases could only be
described in a tool-dependent maner.

TTCN-3 features a « Test Control Notation » so as to describe the
successive execution of several test cases:

if (v TC Resultl == pass) {
v TC ResultZz := execute(tc ConnReconf 2(});
v_TC_Result3 := execute(tc ConnReconf 3(});
I
else | /* Code inserted here... */ 1

The Test Control Notation is paramount to make test automation
possible!

31

32

Applicability of TTCN-3

Could be
Excellent Good better...
* Conformance testing ©
* Interoperability testing ©
* Service, function and feature testing ©
* Performance testing ®
* Stress, robustness and load testing ®
* Real-time testing ®
* Regression testing ©

33

Chapter 2: cornerstones

* Methodology basics
* Structure of TTCN-3 code

34

Test purpose

* The test case defines the implementation of the test purpose in
TTCN-3

* Typically there is a one-to-one mapping between test purposes and
test cases

Test purpose definition according to ISO/IEC 9646-2:

“A prose description of a well defined objective of
testing, focusing on single conformance requirement
or a set of related conformance requirements as
specified in the appropriate OSI specification”

35

IUT and SUT

* What is the difference between an Implementation Under Test (IUT)
and a System Under Test (SUT) ?

— The IUT usually exists inside the SUT

— The IUT may only be reachable through the SUT meaning that the Test
System will communicate with the IUT through the SUT

System Under Test
(SUT)

36

ATS and ETS

® The Abstract Test Suite (ATS) is a test suite written in TTCN-3

° |t is abstract: it does not implement communication, data encoding,
test report generation, etc.

® The ATS is compiled with a TTCN-3 compiler

°* Typically, target adaptation code is added, to implement at least
communication and coding

°® The result is an Executable Test Suite (ETS)

Test-Data and
Parameter Defs.

Test-Behavior
Abstract Test Suite

Test-Architecture

Executable Test Suite

Test component

* The test components are entities on which behavior can be executed
— For each defined behavior which contains communication statements
the type of the test component on which the behavior is executed must
be specified
* Test components run in parallel
° There are three kinds of test components:

— MTC - Main Test Component defines the main controlling process in the
tester, only one MTC may be active in a test case

— PTC - Parallel Test Component, processes that can be created by the
MTC or by other PTCs

— TSI - Test System Interface, a component which provides an abstract
interface to the SUT

37

Test components in the test system

Executable Test Suite

)

S SUT

)

38

The necessary interfaces

* When executing test cases the ETS must be connected both to the user and to the
SuUT
* The TTCN-3 Control Interface (TCI) connects the TE to the test user

— TM (test management): library offers functions for parameterization & test execution. Can be
called from a “main”-function, that is connected to the user interface

— CH (component handling): callback routines, for creating, and terminating components.

Tli (test logging interface): routines that can be implemented. They are called when specific
events occur

— CD (coding and decoding): routines that must be implemented. Coding and decoding values
into bitstrings, to be used in the system adapter.

® The TTCN-3 Runtime Interface (TRI) connects the TE to the adapters
— SA (SUT adapter): communication with the SUT and connections handling

— PA (platform adapter): timer implementation and external functions

39

TCIl and TRI interfaces

Standardized Standardized.
TTCN-3 Control TTCN-3 Runtime
Interface TCI Interface TRI
' Test Management
(TM)
Translated
(TLI)
Under
Test
Platform
Component .) Adapter
TTCN Runtime Library (PA)

40

Chapter 2 : cornerstones

* Basic terminology

® Structure of TTCN-3 code

41

Methodology basics

° How to start a test process from scratch
— Consider test system architecture

« For protocol conformance testing current TTCN-2 methodology can be used
— Start from the requirements of the system we want to test
— Define test specification and test purposes - TPs

— Develop test cases that match the requirements and the corresponding
TPs

— Implement and execute the test cases in the real environment

— Log the achieved the results and draw conclusions based on the
information obtained

42

Requirements analysis

* Analyze and check the requirements valid for the implementation
we are going to test

* Requirement Management (RM) tools can be used to keep the
development process consistent from project initialization to project
termination

— Using proper tools it is easier to verify that all requirements have been
implemented and tested

43

Methodology overview

Specification I

Implementation

Identification

44

Test specification and derivation of test
purposes

* Derivation of the test specification —
— From a functional aspect of the Identification
implementation
— From a standard point of view

* Defining the Test Suite Structure

® Test purpose derivation
— The test purpose defines what we are going to test
— Test purposes should exist prior to developing the test cases

— Test purposes could be free text, UML SDs, MSC diagrams or other
proprietary views

45

46

Writing the test cases

° A test case describes the
implementation of a test purpose
and includes

— PTC — parallel processes controlled
by the MTC

— Ports — abstract communication with the environment
— MTC — the main controlling process
— TSI — interaction on the abstract level with the SUT

* Developed in TTCN-3

— Use Configuration Management tools (CM) for keeping the
development process (e.qg. files, projects...) consistent between
releases of software and in a distributed development team

— Link test cases to the requirements for control of the development cycle

Implementation and execution

Implementation

* Adapt the abstract code derived in the previous
step to the target

— Involves automatic generation of executable
code

— Adding system specific information to the
generated code

« Timer information, test port information etc.

— Encoding and decoding of messages

* The generated code (based on the TTCN-3
ATS) makes use of the TRI — TTCN-3 Runtime
Interface

— Standardized interface for making of ETS

* Run the executable test suite on the target in
the environment specified

47

48

Logging and synthesis of results

* Logging of results from the execution can be

done in several ways:

— Textual logging and graphical logging
— Post-logging and storage in files/databases
and runtime-logging
* After the execution the synthesis of the
results is done and conclusions are drawn

* Reviewing of final results/verdicts
* Test report production

Chapter 2 : cornerstones

* Basic terminology
* Methodology basics

49

50

Structure of TTCN-3 code

* TTCN-3 code is placed inside modules
° Modules consist of two optional parts: Module
— Module definitions definitions
« Types, test cases etc.
— Module control
« Controlling test case execution
» One module with a control part per tester Module

* A TTCN-3 module can also have attributes el
— Display attributes, encoding attributes...

Attributes

TTCN-3 modules

* Modularization strategies:

— Provide common type declarations,
constant definitions, functions etc. in
a shared module

— Hide the implementation of
functions and test cases from other
modules

— Design Modularization carefully:
Cyclic include is not allowed

Attributes

51

Module

Attributes

Module

Attributes

Module parameterization

* Parameters can be used in a variety of definitions in TTCN-3
— Modules, functions, altsteps, testcases, templates...
* On module level we can define external parameters that can be

used to keep the module abstract, i.e. not having to hard-code
implementation specific values into the test

— This was in TTCN-2 related to PICS/PIXIT

module MyModuleWithParameters {
modulepar { integer TS_MaxValue := 42; bitstring TS_TargetAddress }
// Code inserted here...

var integer MaxNumberOfAttempts := TS MaxValue;

52

53

Downward language compatibility

In case of language updates, downward compatibility can be achieved by
specifying the TTCN-3 language clause for the modules

module Editionl language "TTCN-3:2001" ({
// This module will be translated according to
// Edition 1.1.0 of TTCN-3

module Edition2 language "TTCN-3:2003" ({
// This module will be translated according to
// Edition 2.2.1 of TTCN-3

module Edition3 language "TTCN-3:2005" {
// This module will be translated according to
// Edition 3.2.1 of TTCN-3

Structuring the code using groups

* Test suites can be hard to read and understand from a structural
perspective

— Modules can be logically structured by groups
— Hierarchies of groups of definitions are possible

— Groups are not scope units, but modules are. Use modules as building
blocks to define either test suites or libraries

— All Definitions of a group may be imported into other modules

= [signatures | BigModule
IﬁEﬂ!ﬁﬁﬁl —— Lo % ‘x

= Y.
Y 10 ‘Q Y [y v° /unc |onsl
= Altsteps °
I = </
L : : : S N [y

54

55

Grouping and comments

* Grouping can be used to structure modules efficiently

* Both block and line comments available

module Address Autoconfiguration {
group FailureCases ({
group TimeoutCases ({
/* Block comments continue
over line boundaries. */
}
group ErroneusReceptions {
// This is a line comment. It is
// terminated by the end of line.

Chapter 3: data

* Types and Values
* Importing

56

Scope rules of TTCN-3

° In TTCN-3 there are units of scope which consist of optional
declarations and, in some cases, optional blocks of statements

— Module definition part, control part of a module, component types,
functions, altsteps, test cases and statement blocks

— Scope units are hierarchical
« Exact hierarchy is defined in the TTCN-3 standard

* Some examples of scope rules:

— Declarations made in the module definition part outside other scope
units are visible throughout the module — e.g. constants

— Declarations made in the component type are visible to every function,
test case and altstep which is executed on that component type

57

58

Identifiers and keywords

* Identifiers visible in the same scope shall be unique — overloading of
identifiers is prohibited

* |dentifiers in TTCN-3 are case sensitive
— Permitted alphabet: (“a-z”,"A-Z”, “0-9” and “_")
— An identifier must begin with a letter

* TTCN-3 keywords are always lowercase

Definition of types, values and templates

* We need to define the messages sent to and received from the
SUT, or the signatures called in and received from the SUT

° The data model consists of a types and values
* Messages / Signatures can also be described by templates of
specific types

— A template can be a single value or a constraint (value list, wildcard,
character pattern, ...) to be used in a receive statement

— With templates, the test data can be abstracted independently from the
message / signature type definitions — important testing concept!

— No specific "message type" such as a PDU or an ASP type exists

59

60

Chapter 3 : data

Scope rules, names, keywords

61

TTCN-3 types

* The different kinds of types in TTCN-3:

— Basic types
« integer, boolean, float, objid and verdicttype
— Basic string types
« bitstring, hexstring, octetstring, charstring and universal charstring
— User-defined structured types
« record, record of, set, set of, enumerated and union
— Special types for configuration, data and default handling
+ address, port and component

* anytype
+ default

Defining types and subtypes - examples

type integer ICMPTypeIldType (0..255) ;
// Allowed value range specified
type integer EvenNumber (2, 4, 6, 8, 10);
// Allowed values specified
type boolean RFlagType;
type float ValidTimerValueType(0.5..0.6);
type record NeighborSolType {
ReservedNS reserved ns,
TargetAddress target address,
SourcelinkLayerAddress source link layer address optional
}
type bitstring ReservedNS length(8) ;
// Length exactly eight bits
type charstring TargetAddress length(16..32);
type charstring IDType (pattern "XY-??2°?-*");
type charstring AthrouthZ ("a" .. "z");
// also with value lists

62

Defining types — more examples

type union NDMessageType {

}

RouterAdvType router advertisement,
NeighborSolType neighbor solicitation

type enumerated IPVersionType { IPV4, IPV6 }

// Possible values listed

type enumerated IPVersionType { IPV4(5), IPV6(7) }

// Suggested encoding constants for values, not mandatory

type record of integer IntegerListType;

// Dynamic array, of any size

type record length(l..8) of hexstring IPAddressType length (4);
// A list of at least one, maximum 8 hexstrings, each of which
// contains exactly 4 elements

type record ExampleType {

integer Eleml,
boolean Elem2

63

Value notation examples

const float c PiValue := 3.141592654;
const float c TimerValue := 500E-3; // always uppercase E
const ReservedNS c AllZero := '00000000'B;

// Octet string values in single quotes followed by O,
// hex string values in single quotes followed by H

const charstring c Hello := "Hello there!";

const IPVersionType ipversion := IPV6;

// Names of enumeration types have global scope!
const IntegerListType intlist := { 2, 3, 4 };

const IPAddressType addr := { 'ABCD'H, '0123'H };

64

65

Value notation examples - records

// Alternative 1

const ExampleType c ExampleValuel
Eleml := 5,
Elem2 := false

// Alternative 2

const ExampleType c ExampleValue2
{ 62, false }

// Alternative 3

var ExampleType v_ExampleValue3;
v_ExampleValue3.Eleml := 67;
v_ExampleValue3.Elem2 := true;

// Type Definition
type union IntOrFloat

{

Value notation examples - unions

// Alternative 1

const IntOrFloat c_ five := {
i :=5
integer i, }

float £ var IntOrFloat v fivedotone;

v_fivedotone := T f := 5.1 };

66

// Alternative 2
var IntOrFloat v sixdottwo;

v_sixdottwo.f := 6.2;

// Anytype

var anytype a, b, c;

a := { integer := 42 }; //Alt.
b.charstring := "abcd"; //Alt.

c.IntOrFloat
//Combined

{ £ := 5.1 };

67

Thought question

Would the assignment in the
last line be legal, or illegal?

// Type Definition
type union IntOrFloat
{

integer i,

float f
}

// Anytype
var anytype c;

c.IntOrFloat.f := 5.1

*y

Accessing string or 'record of’ elements

var bitstring MyStringl, MyString2 := '11101'B;
MyStringl := MyString2[3]; // MyStringl has value ‘0’B
MyString2[3] := 'l'B; // MyString2 has value ‘1111

// Same notation applies for other string types and the
// "record of" type
// Index 0 of a bitstring is its leftmost bit.

type record of integer RecordOfInt;
var integer MyIntVar;

var RecordOfInt MyRecordOf := { 55, 77, 99 };
MyIntVar := MyRecordOf[1l]; // MyIntVar has value 77
MyRecordOf[0] := MyIntVar; // MyRecordOf is { 77, 77,

1'B

99

68

69

Accessing record elements

var ExampleType MyRecord;

var integer MyIntVar;

MyRecord := {
Eleml := 99,
Elem2 := true
}
MyIntVar := MyRecord.Eleml; // MyIntVar has value 99
MyRecord.Elem2 := false; // MyRecord is now { 99, false }

Chapter 3 : data

° Scope rules, names, keywords
* Types and values

70

71

Importing to TTCN-3

* TTCN-3 is harmonized with 4 A

ASN.1 ASN.1 Types —
e . & Values
* Capabilities in the future include: 7
— UML, C++ Other types —
— IDL, XML X
i TTCN-3 Core
— Proprietary data types Language

— etc.

Other types —
Vi‘

Importing

* It is possible to reuse definitions from other TTCN-3 or ASN.1 modules by
importing them

* Single definitions, groups, all definitions of a certain kind or the entire
contents of a module can be imported

* If an imported item uses other definitions, their type names are not imported
by default

— In e.g. a record type the identifiers of the elements can be used to set the
values of the elements, but the types of the elements are not imported by default

* If an item is imported recursively, all the type names it contains are
imported as well

* Only definitions from the specified module are imported

72

73

Importing examples

module Address Autoconfiguration {
// Example of a module with imported definitions

import from IPv6Protocol all;
// Imports everything from the IPv6Protocol module

import from Typelib {type MyAddressType};
// Imports of a single definition (nonrecursive)

import from Messagelib {template all};
// Imports all templates from module MessageLib

import from Typelib recursive {type MyAddressType};
// All types contained by MyAddressType are imported

import from ASN1Module language "ASN.1:1997" all;
// Import all definitions from an ASN.1l -97 module

74

Chapter 4: core notation

Defining messages for protocols

Tester SuT

* Messages are sequences of bytes, Switch(greer)
that are sent from the tester to the CommandStatugErrorNone!
SUT, and received in the tester from LightStatugLampOff(0), LampOff(0), LampOn(1))
the SUT Switch(red)
L CommandStatugErrorNone) |
Name Prefix Params. CommandStatugErrorNone)
. LightStatug(l ampOn(1), LampOff(0), LampOf(0))
Switch (green)0x02 0x01 tohtStatugLampOn(1), Lam am
Reset()
Switch (red) 0x02 0x00 CommandStatugErrorNone)
Reset 0x01 LightStatugLampOn(1), LampOff(0), LampOff(0))
Ooff 0x03

75

* Possible messages are defined by TTCN-3 types.

76

Step 1: parameters

* Read the protocol definition, and detect the various parameter
types, and their possible values

// Parameter Type of the Switch Command
type enumerated SwitchDirection {
RedToGreen (0),

GreenToRed (1)

Step 2: message definition

type union Command {

/*1*/ ResetCommand reset,
/*2*/ SwitchCommand switch,
/*3*%/ OffCommand off

}

type record SwitchCommand {

}

type record OffCommand ({

type record ResetCommand {

© Codec can be implemented

© Codec is fairly easy

* Encoding and decoding follows a

SwitchDirection d fixed scheme

* Only the command union type
may need special handling to map
the union names to the prefix
codes, and back again.

// no parameters

* Remember: union in ttcn-3 is a
type-safe discriminated union, and
not as in c.

// no parameters

78

Chapter 4: core notation

* Defining messages

Testing concept: templates

. I— Data
<<impor>> " pefinition <<import>>

with
Templates

Type
Definitions

Testcases,
Functions

° Templates: abstraction for sent data and for the conditions, received data
must fulfill

* Define the data and the conditions separately from the types, and the
behavior

* Templates can be developed independently from the behavior
* Templates can be reused in various test cases

80

Template definitions

* Templates are used for two purposes:
— Transmitting a distinct value (must be defined unambiguously)

— Testing whether a received value matches certain criteria, which are
specified in the template definition

* Template definition:
template <basic type> <temp name> [(<params>)] :=
<value or matching expression for basic type>

81

Templates and values

* Templates can be defined using other templates, constants, specific
values
* All elements in e.g. a record type are by default mandatory in TTCN-3

— The keyword optional can be used to denote possible absence of an
element

* If an element is omitted using the omit keyword, no value for this
element shall be sent, and must not be received

Template definitions

template integer temp IntegerTemplate := 42;
template float temp e := 2.7182;

type record NeighborSolType {
ReservedNS reserved ns,
TargetAddress target_address,
SourceLinkLayerAddress source_link layer address optional

}

const ReservedNS c_AllOnes := '11111111'B;
template NeighborSolType temp NeighborSolicitation := {
reserved ns := c_AllOnes, // Constant used to set value

target_address := temp TargetAddress,
// Template used to set value
source link layer address := omit

82

83

Nested template definitions

type record rec_a { charstring s, integer i }
type record rec b { rec a, float f optional }

template rec_b temp rec bl := {
a = {
s := "abc";
i:= 2},
£ :=1.5}
template rec_a temp rec_a := {
s := "abc";
i::=7?1}
template rec b temp rec b2 := {
a := temp rec a,
i g2 1.8

* Templates temp_rec_b1 and temp_rec_b2 define the same value

84

Defining value sets with templates

° In a message receive event the contents of the message are
compared to a template
* Matching can be done in different ways:
— Matching explicit values and expressions
— Matching value sets
+ Templates containing lists of values or complements of them can be matched
— Matching using wildcards instead of or inside values
* AnyValue <?>, AnyValueOrNone <*>
— Matching string patterns
— Matching using attributes of values, such as length of a string

Matching mechanisms

template integer temp Fifty := 25 * 2;
// The template matches the value of the expression, i.e. 50
template integer temp SmallPrimes := (1,3,5,7,11);

// The template above matches any value in the set

template integer temp NoEvenUnderTen := complement (2,4,6,8);
// The template above matches any value NOT in the list

template integer temp AnyInt := ?;
// The template above matches any integer value

template charstring temp StartWithFoo := pattern "Foo*";
// The template matches any charstring which begins with Foo,

// number of elements (chars) or by no elements at all.

template charstring temp StartWithBar 6Chars :=

pattern "Bar???";
// Question mark inside strings and lists matches exactly
// one element There are more character pattern options
// (not covered in the Paris VII course)

// e.g. "Foo", "FooBar"... The asterisk can be replaced by any

85

Matching mechanisms - continued

type record NeighborSolType {
ReservedNS reserved ns,
TargetAddress target_address,
SourcelLinkLayerAddress source_link layer address optional }

template NeighborSolType temp NeighborSolicitation recl := {
reserved ns := '11001100'B,
target address := ?, // Any value accepted
source link layer address := * // Any value accepted,
} // absence OK
template NeighborSolType temp NeighborSolicitation rec2 := {
reserved ns := ('00000000'B, '11111111'B),
// Either value OK
target address := temp TargetAddress,

// Other Template used to set value
source_ link layer address := ? // Must be present,
} // any value OK

86

Template parameterization

* Templates can be made reusable by parameterizing them
° The formal parameters are defined in the template definition

* When the template is used, actual parameters must be included in
the reference to the template

* When templates are used as parameters, the keyword template
must be used in the formal parameter list

° For templates only in-type parameters are allowed — no specific
keyword is necessary

— More examples of parameterization are presented later

87

Template parameterization - example

template NeighborSolType temp NeighborSolicitation_ recl
TargetAddress param_ target) := { Formal parameter list

reserved ns := ‘11001100'B,

target_address := param target, // Actual parameter used here

source link layer address := * // Any value accepted, absence OK
} Actual parameter list

// Usage of the template in e.g. a test case-
IP.receive (temp_NeighborSolicitation_recl (c_TargetAddress)) ;
// Usage of the template in other template:

template NeighborSolType temp NeighborSolicitation_ target :=
temp NeighborSolicitation recl (c_TargetAddress)

88

® The number of elements in an actual parameter list is always the
same as the corresponding formal parameter list

— The order of the elements must also be the same

Parameterized template definitions

type enumerated SwitchDirection { RedToGreen (0), GreenToRed (1) }
type record SwitchCommand {
SwitchDirection d
}
type union Command {
ResetCommand reset,
SwitchCommand switch

Chapter 4: core notation

* Defining messages
* Templates

}
template SwitchDirection switchdir := RedToGreen; °
template SwitchCommand sw_green := { RedToGreen }; °
template SwitchCommand sw_green 2 := { d := switchdir };
template SwitchCommand switch_com (SwitchDirection dir) := ?
template Command com switch := { switch := sw_green };
template Command com switch 2 := { switch := { d := RedToGreen } }
template Command com switch 3 (SwitchCommand com) := ?
template Command com switch 4 (SwitchDirection dir) := ?
89 90
Port and component types Communication model
Behavior executed
Com ponent on Component * Ports are an abstraction for any type of interface Test

* Recall: test components are the / * Communication between different entities in TTCN-3 and the SUT is Component

building blocks with which the / handled using ports

abstract test suite can be Port.send(Stimulus) * Ports are defined in components by referring to a port type i

— A port type definition specifies the messages and signatures that

constructed Port.receive(Response) can be transferred through the port n
* There are three kinds of test — In the port type definition, the direction of the message or signature 0

components, the test system has to be defined: 4

« In: messages/signatures, that can only be received through the port t

91

interface (TSI), the master test
component (MTC), and the parallel
test component (PTC)

Components define the interface of
a test component by declaring ports

System Under Test

Components may also define data,
that is stored locally in the Port defined in Component
component

« Inout: messages/signatures, that can be sent and received through the port
« Out: messages/signatures, that can only be sent through the port

— The incoming messages and signatures in each port are stored in a
FIFO (first in first out) queue by the run time system

92

ﬂ
|

Defining port types

Port.send(Stimulus)

Port.receive(Response)

type record NDMessageType ...

type port IPPortType message {
inout NDMessageType Fort

v I
} System Under Test
type port IPHostPortType message {
in RouterAdvType; Port of some
out NeighborSolType, RouterSolType Port Type
}

* To define ports in components, port type definitions are needed
* Port type definitions specify the communication model:messages or signatures

* Port type definitions specify the message or signature types, that can be sent and
received in each direction

93

Component type definitions

* Components specify the interface to other components by defining ports
° Multiple ports of one port type may be defined
* Behavior is executed in component instances

* A component can have local declarations, which are visible to all functions,
test cases etc. running on the component

type component HostType { PR TN

Port.receive(Response)

var boolean v_Terminate;

port IPHostPortType IP

System Under Test

Component

94

The sequential test configuration model

* In sequential tests, the test system interface is mapped to the ports of a
single component, the master test component (MTC)

® The test system interface and the master test components are defined with
the same TTCN-3 component definition (in this case)

* No connections needs to be defined between the ports of the test system
interface, and the ports of the MTC (in this case)

Test system Connection established
MTC automatically, if no system
component specified

-
¢ /’J
Test System Interface I I.___

SUT

95

Chapter 4: core notation

* Defining messages
* Templates

* Ports and components

96

Timers

° Timers can be used e.g. to make sure a message is sent only after
a certain amount of time has passed from another event

— Timers can be declared in test components

— Other uses for timers will be covered later
* Timer value are non-negative float value
* The base unit is in seconds

TrafficLightTester SUT

off()

CommandStatus(ErrorNone)
~X wait_timer = 10 seconds

/ <—X wait_timer()
Timer Reset()

97

Timer operations

* In each active component a list of running timers and expired timers is maintained
automatically
* Starting a timer: <timer name>.start[(duration)]
— If the timer has no default duration, a duration has to be given in the start
command
° Stopping a timer: <timer name>.stop
— Timer is stopped and its entry is removed from the running timers list
— Stopping all timers: all timer.stop
* Waiting until a timer has expired: <timer name>.timeout
— Can only be executed when the timer has indeed expired
— Waiting until any timer has timed out: any timer.timeout
* Checking, if a timer has expired: <timer name>.running
— Returns boolean value indicating if the specified timer is running
— Checking, if any timer is running: any timer.running

® Query elapsed time of a timer: <timer name>.read

98

Chapter 4: core notation

* Defining messages
* Templates
* Ports and components

° Timers

99

Message-based communication

* What is message-based communication?

— Messages are sequences of bits, that are sent to, or received from some
other component through an interface

— The interface is abstracted by a port

— Messages are abstracted by values
that have some type

* How to use it?
— Sending messages

— Receiving messages TrafficLightTester SuT

Switch(green)

CommandStatus(ErrorNone)

/ LightStatus(Off(0), LampOff(0), LampOn(1))

Messages

100

What is message-based communication?

send receive

Sender Receiver

* Message-based communication has a sending side and a receiving side,
the communication itself is asynchronous

— The sender continues executing its behavior after the send event, but the receiver blocks
on the receive event until it can be executed

— The responding side normally acts as a black-box where messages are handled in the
order they appear
* Typical application areas are communicating systems: telecom systems,
datalinks, etc

102

Sending and receiving

* Sending: <name of the port>.send(<value to be sent>)
— The value in the send statement must be defined unambiguously!

IP.send (temp NeighborSolicitation) ;

° Receiving: <name of the port>.receive(<value(s) expected>)

— A single value or a template matching a group of values can be specified

IP.receive (temp RouterAdvertisement) ;

In send and receive, values of variables, constants, and
templates can be used

Chapter 4: core notation

* Defining messages

* Templates

* Ports and components
* Timers

* Sending and receiving

103

104

Sequential behavior

S1

s2 |:> [s1; s2; s3; |

S3

* Operations taking place one after another are separated by
semicolons

* White space has no semantical meaning

105

Verdicts

* A verdict is used for displaying
the result of an executed test
case

* The verdict should be relative to
the test purpose, not the actual
success of the operation we are

testing TrafficLightTester SuT

— Example: If the test purpose Reset()
states the operation should fail,
then a failed operation should
lead to a pass verdict...

CommandStatus()

LightStatus()

/» verdict=pass
Verdict |

106

Verdict handling — continued

* The available verdicts are:
none, pass, inconc, fail, error

* In each component a local verdict is maintained and it can be set and
read
° A global verdict, which is the value returned by the test case after
execution, is automatically maintained
— The global verdict cannot be read or set
— The global verdict is updated whenever a component terminates
* A verdict can never be improved

— When a verdict is updated, the new value is the minimum of the old
value and the newly assigned value

Using verdicts

° The verdicts have to be explicitly set using the setverdict operation
— Syntax: setverdict(<value>)
— The error verdict cannot be set using setverdict

* There is also a possibility to get a local verdict of a component using
the getverdict operation

— Syntax: <variable of verdicttype> := getverdict

var verdicttype MyResult;
setverdict (inconc) ;

MyResult := getverdict;

setverdict (pass) ;

107

108

Test cases

® Test cases are special functions which return a verdict

® The runs on keyword is used to define the component type on which
the test case can be executed — the ports and variables in the
component type become visible to the test case

* The parameter list after the test case name has to be present even
if it is empty

testcase TC_AA 01() runs on MyComponentType {
MyPort.send (temp HelloMessage) ;
MyPort.receive (temp_ AnswerMessage) ;

setverdict (pass)

Example of a test case

* The stop operation stops the component instance on which the test
case is running

testcase BasicRedGreenRed Test () runs on
TrafficLight MessageInterface {

msgport.send (off) ; // Send a message
msgport.receive (cmd_status (ErrorNone)) ;

// Receive a message
// Declare a timer
// Start a timer

timer wait_ timer := 10.0;
wait timer.start;
wait:timer.timeout; // Wait for timeout
msgport.send (reset) ; // Send another message
msgport.receive (cmd_status (ErrorNone) ;

// Receive another message
msgport.receive (lamp_status(red light)) ;
// Receive a third message
// Set a verdict
stop; // Stop the Test Component

setverdict (pass) ;

109

Test case execution

* Test case execution is handled in the control part of a TTCN-3
module using the execute-keyword

* Variables of verdicttype can be used in the control part to store
verdicts

module MainModule {
// Import statements not shown here...
control {
var verdicttype Result;
execute (TC_AA 01()); // execute test case

Result := execute(TC_AA 02());
// execute and store the verdict
Result := execute(TC_AA 03(), 5.0);

// execute, but abort and return an ’'error’ verdict
// if not completed within 5 secs

110

111

Chapter 5: Advanced Constructs

* Advanced templates

112

Expanding the problem domain

* In the traffic lights example we have covered so far only a
sequential flow of action

— What if messages don't arrive within a certain time limit?

— How to handle invalid or erroneous messages?

* The following parts expand the problem domain and address more
details of the TTCN-3 language

& Testing Concept: Alternative behavior

S
S1 alt {
[1 s2 {

) G

s2 s3 s4 [] 5 { s8 }
S6

ssc>/~se s7 } : ol

S8 S9

}
[1 s3 {}
[1 s4 { S7; S9 }
}

° Use Alternatives to branch automatically between multiple blocking
statements (receive, timeout, ...)

* Alternatives are listed in an alt statement

* The square brackets can be used as qualifiers for the alternatives —
to be presented later

113

114

Alt statement properties

* An alt statement consists of branches, each of which is preceded by
a possibly empty guard in square brackets

* Following the guard we have two possibilities:
— A reference to an altstep — will be explained later
— A certain kind of operation followed by a statement block
* Only blocking operations are allowed after the guard!
— For instance message receive or timer expiry

® For a branch to be chosen the guard must be empty or evaluate to
true and the operation following the guard must be executable

Using alternatives

testcase TC_AA 03() runs on
TrafficLight MessageInterface ({
msgport.send (switch (GreenToRed)) ;
msgport.receive (cmd_status (ErrorNone)) ;
t_GuardTimer.start; // Defined elsewhere
alt {
[1 msgport.receive (lamp_status(red_light)) {
setverdict(pass); }
[1 msgport.receive (lamp_status(any_ light)) {
setverdict(fail); }
[1 msgport.receive { // any message
setverdict(fail); }
[1 t_GuardTimer.timeout ({
setverdict(fail); }

115

A

Testing concept: "snapshot"-semantic

}

template Templatel charstring

template Template2 charstring

alt { What happens, if a message

matching template template1
arrives just before the
second alternative is evaluated?

[] Port.receive (Templatel) {
setverdict (pass) ;

}
[] Port.receive (Template2) {

* Snapshot-semantic prevents
against strange effects in the
execution of alternatives

setverdict(fail) ;

* Write specific alternatives (good
cases) before the more general

:= "datal"; alternatives (error handling)

= 2.

L

116

Repeat statement

° The repeat statement jumps back to the beginning of the alt
statement block

° Useful to get rid of ,hello, | am still there“-messages
° Can also be used inside altstep (later)

Guarding alternatives

tim.start;

alt {

[1 IP.receive(temp RA) ({
setverdict (pass)

* An alternative may be preceded by a
guard, boolean expression

— Only alternatives with guards evaluating to
TRUE are considered when going through

the alternatives
[T<1.0] IP.receive (temp NSol) {

// T < 1.0 is a guard expr.
alt { * The alternative guarded by else will always setverdict (inconc)
[1 p.receive (expected message) { be executed }
setverdict (pass) ; — Ifno other alternative matched before, the [else] {
verdy P ! alternative guarded by else will be // This branch will be chosen
} executed // when reached
[1 p.receive (hello) { — An else branch, if used, must be the last T := tim.read;
repeat; alternauvg in an alt statement! if (tim.running) {
! — — No operation between an else guard and repeat;
} Test the statement block! }
} Component setverdict (fail) }
}
}
17 "8
Interleaving Interleave replaced by alt statement tree

* With the interleave statement we can specify a set of statements
which may happen in any order, as long as they all happen

* Valid for done, timeout, receive and getcall

— And for some other statements as well, but these haven’t been covered
in this course

interleave {
[l MyCompl.done {}
[] MyComp2.done {}
[1 MyPort2.receive (temp AllCompleteMessage) {}
}
// All three events must occur in some order before the

// interleave statement is completely executed

119

alt {
[1 MyCompl.done { alt {
[] MyComp2.done {
MyPort2.receive (temp_AllCompleteMessage) ;
}
[1 MyPort2.receive (temp_AllCompleteMessage) {
MyComp2 .done ;
}
}}
[1 MyComp2.done { alt {
[1 MyCompl.done ({
MyPort2.receive (temp_ AllCompleteMessage) ;
}
[1 MyPort2.receive (temp_AllCompleteMessage) {
MyCompl .done ;
}
1}
[1 MyPort2.receive (temp AllCompleteMessage) {

}

120

Chapter 5: Advanced Constructs

* Alternative behavior

121

122

Advanced template constructs

template float yellow_to red time ok := (4.25 .. 4.5);
if (match(tim wait for red.read, yellow to red time ok))

{
}

* Templates can be defined locally, inside a function

* The name of such templates is visible in the function only. The
template itself may thus be used as out parameter, or in the return
statement of a function

* Template variables can be defined, they can be assigned other
templates

Inline templates

° It is cumbersome to define templates for each receive operation in
the project. Alternative: use inline templates instead

Instead of:

template integer temp_any integer := ? // Named template
<port name>.receive (temp_any integer)

You could use an Inline Template in the receive statement:

<port name>.receive (integer : ?) // Inline template

123

Template inheritance

type record rec {

integer a, q 5 P
What if record 'rec
integer b,

has 20 fields?
integer c
template rec rec_t := { What if definition
a := 10, changes ?
b :=2?,
c = ?

template rec rec_any := ?

template rec rec_t modifies rec_any := {

124

Advanced matching mechanisms (1)

Ranges:
(<from value expression> .. <to value expression>)

template integer lessl100 := (0
// Specify ranges of integer and floats with dots

const float eps := 0.001;

template float nearly(float val) :=
(val - eps val + eps);

// Also works with expressions

template integer positive (0 .. infinity);

template integer negative := (-infinity .. -1);

100); // don’t forget ()

125

Advanced matching mechanisms (2)

type record of integer intlist;

template intlist primesunderten := {1, 2, 3, 5, 7};

// This is a list of integers, not an allowed set

// for one integer!

template intlist whatsit := {1, 2, (1, 2, 3), 5, 7 };
// Each list element can be a matching expression

// for the element type. So, List and set can be mixed

template intlist endswithl0 := {1, *, 10 };
// * stands for any number of elements or none
template intlist endswithll := {1, * length (2 .. 4), 11 };

// * stands for any number of elements or none

// but the length specification restrict that further
template intlist permuted := { 0, permutation(l, 2, 3), 4};
// Order of middle 3 numbers is irrelevant

126

Advanced matching mechanisms (3)

type record Person {
charstring name,
int age optional
}
template Person chriss := { "Criss", 17 }; // must
template Person allan := { "Allan", omit };
// must not be
template Person Jennifer := { "Jennifer", ? };
// must be
template Person jane := { "Jane", * };
// may or may not be
template Person joe := { "Joe", 42 ifpresent };
// 42, if

be 17

there

there

there

there

127

128

Matching meta-symbols for patterns (1)

template charstring temp_ foobar := pattern "Foo*Bar???";
// * any string (also empty), ? matches one character

template charstring temp foobarl := pattern "Foo*Bar\?\?\?";
// use backslash to protect against special meaning

template charstring digit := pattern "[0-9]";

template charstring nondigit := pattern "[*0-9]";
// [abc] one of a, b, or ¢, [0-9] one 0o£ 0, 1, ... 9,
// * inverts

template charstring digitl := pattern "\d";
// \d equiv. to [0-9], \w equiv. to [A-Za-z0-9],
// \t tab character, \r CR (ascii 13)
// \n newline characters (ascii 10, 11, 12 or 13)
// \s whitespace characters (ascii 9, 10, 11, 12, 13, or 32)
// \b word boundary (beginning or end of a word)
// \" or "" match double quote char

template charstring digit_or_ whitespace := pattern "(\d|\s)"
// () groups expressions, | alternative expressions

Matching meta-symbols for patterns (2)

template charstring twenty digits := pattern "[0-9]#20";
// #n n repetitions of expression before #

template charstring number := pattern "[1-9] [0-9]#(0,)";
// #(n,m) at least n, max. m repetitions of expression
// any of the numbers can be left open, + means #(1,)

var charstring name := "Allan";

template charstring nametemplate := pattern "name={name}";
// {x} refers variable, modulepar, constant or template x
// of type charstring or univeral charstring inside the
// value of the template.

type charstring Digit ("O0".. "9");
template charstring digit := pattern "\N{Digit}";
// \N{x} includes possible values of type x inside the
// value of the template. x must be a charstring or
// universal charstring type, subtyped to values
// of length 1

129

Chapter 5: Advanced Constructs

* Alternative behavior
* Advanced templates

130

Storing value of received messages

* Values sometimes need to be stored into variables
— E.G. To use some kind of message id in the reply
— E.G. Context sensitive checks must be done

type record Request {
integer id,
charstring variable name

}

type record Reply {
integer request_id // use id from received

request
charstring variable value

}
var Request r;
p.receive (Request : {?, "x") -> value r;

p.send (Reply : {r.id, "value of x" });

131

Addressing entities inside the SUT

* Sometimes, different devices with the same functionality are contained in
the SUT

° In a test suite, you can
— choose freely how addresses look like in your test environment
— can leave the exact address type undefined, and use values only
— send a message to a specific Implementation Under Test (IUT)
— receive a message from a specific IUT
— store the address, where a received message comes from
— send messages to multiple IUTs
— send messages to all IUTs

System Under Test (SUT)

Test
System

132

Examples for addressing

var address al,

p.send (...)
p.send (...)

p.send (...)

type record address { . |
a2, a3;
to al;
to (al, a2, a3);
to all component;
(...) from al;

p.receive

p.receive

P.receive
p.receive

P.receive

)

5))
.)
.)

from (al, a2,

from ?;

-> sender al;

//
//

//
//

//

//
//

a3)
//

//
//
//

use any type definition

you have to initialize them
send to al only

send multicast message

send broadcast message

receive successful if
from al

if from al, a2, a3
any adress allowed
matching expressions allowed

store address of sender

* Alternative behavior
* Advanced templates

* Advanced communication

Chapter 5: Advanced Constructs

133 134
Operators and expressions Predefined functions
Length/size
° i i i i sizeof
Expressions can be defined using different operators Conversion functlons i + sizeof returs the number of
. . n
— Arithmetic operators: +, -, *, /, mod, rem int2char bit2oct engtho elements
P hoi * lengthof returns the length of a
— String operators: & (concatenation) int2unichar bit2str resence / choice string value
. - q i ischosen * ischosen determines which choice
— Relational operators: ==, <, >, I=, >= <= int2bit hex2int N t is made in a union
. int2hex hex2bit ispresen o i ; :
— Logical operators: not, and, or, xor |spre§ent f:hecks for optional fields
o . int2oct hex2oct LOg functions * log Yvrltes |t§ parameters to a
— Bitwise operators, shift operators and rotate operators: - logging device
notdb, and4b, ordb, xordb, <<, >>, <@, @> nt2str hex2str log * regexp retums part of string
)) ’ 1 T ' int2float oct2int S matching regular expr.
tring Handlin: . i
fostzint || octzbit S - raplace repaces or Insrts o
v_area := c_Pi * (v_radius * v _radius); char2int oct2hex regexp string
v_Bool := ((A or B) and (not C)) or (j >= 10); char2oct oct2str substr * rnd computes random number
unichar2int oct2char replace
a2t Sl Other Functions
bit2hex str2float
rnd
135 136

Examples of predefined functions (1)

var integer MyIntVar;
var boolean MyBoolVar;
MyIntVar := char2int("a"); // result is 96

type record MyRecord { boolean fl optional, integer f£2 }

var MyRecord MyRecordVar := { omit, 22 }
MyBoolVar := ispresent (MyRecordVar.fieldl); // false
MyIntVar := lengthof('11100'B); // Returns

MyIntVar := lengthof ("Hi there!"); // Returns

type union MyUnion { MyTypel pl, MyType2 p2, MyType3 p3

var MyUnion MyUnionVar := {pl := c MyTypelValue }
MyBoolVar := ischosen (MyUnionVar.p2) ; // Returns
MyBoolVar := ischosen (MyUnionVar.pl) ; // Returns

false
true

137

Examples of predefined functions (2)

var charstring input := "abbc";
var charstring pattern := "a(b#(1,))c";
var charstring bb := regexp (input, pattern, 1);

// result is "bb"

// substr and replace count from 0
var hexstring cde := substr ('ABCDEF'H, 2, 3);
// result is 'CDE'H

var charstring joe :=
replace ("My name is Alex", 11, 4, "Joe");

var float justanumber := rnd();
// between 0 (incl.) and 1 (excl)

138

139

External actions

* Not all interactions with a system under test can be done ,automatically”, by

sending messages (or remote procedure calls) to the SUT

— For example, if the operator needs to reset the system under test by pressing

some key, or by unplugging the device

* This kind of interaction must be done by the user, that is using the test suite

° The action operation can be called with a character string, or with any other

type

// Testing some behaviour

action ("Please unplug the system under test now") ;
// Verify behaviour when unplugged

action ("Now plug in the system under test again!”);

140

Control structures

* The if-else statement

— if (<expression>) statementblock ;else if (<expression>)
statementblock} [else statementblock]

®* The For statement

— for (<counter initialization>; <loop termination condition>; <counter
update>) statementblock

* The While statement
— while (<condition>) statementblock
* The Do-while statement
— do statementblock while (<condition>)
* The Select-case statement
— select (<expression>) { case (<expression>, ...) statementblock ... }
° statementblock is always enclosed in { ... }

Control structures — examples (1)

if (v_TC_Resultl == pass) ({
v_TC_Result2 := execute(tc_ConnReconf 2());
v_TC Result3 := execute(tc_ConnReconf 3());
}
else { /* Code inserted here... */ }
for (var integer i := 0; i < lengthof (v_MyCharString) ;
i:=1i+1) {
v_MyCharString[i] := "A"

}
while (v_MyColorVar != blue) {
ChangeColor (v_MyColorVar) ;
// Function call, details presented later

log ("ChangeColor called!")

141

Control structures — examples (2)

select (name) {
case ("Allan") { // if name is Allan
log ("Name is Allan");

}

case ("John", "Jane") { // if name is John or Jane
log ("Name is John or Jane");

}

case else { // if name is something else

log ("Name is: " & name) ;

142

143

Chapter 5: Advanced Constructs

* Alternative behavior
* Advanced templates
* Advanced communication

* Standard programming constructs

° altsteps

144

Repeated behavior and altsteps

* There are two ways of implementing repetitive behavior in TTCN-3
— Functions as subroutines
— Altsteps for alternative execution

® Functions are used for preambles, test bodies and postambles
when the first statement is an active event from the tester side

— Sending, starting timers etc.
— Functions can also be used for passive reasons but...

* Altsteps are used for grouping alternatives when the first statement
is a passive event from the tester side

— Receiving, waiting for timeouts etc.

145

Definition of functions

* Functions may be used to avoid repeated definition of functionality
and behavior

* Functions can be predefined or user-defined
— Example of predefined functions are conversion-functions e.G. Int2char
and size/length-functions like sizeof
* Functions can return values or be void
* User-defined functions can be pure calculation functions, but they
may also express behavior, e.G. Sending and receiving messages or
signatures

Using parameters — some examples

function GetLinkAddresSs (in integer interface_id,
in AddType add type)

return AddressType ({

. . Formal parameter list
// definition of the function ...

} // END function GetLinkAddress

template ICMPHeaderType ICMPHeaderData
(integer Ptype id, template ICMP_ CodeType Ccode,
bitstring Pchecksum) := {

type_id := Ptype id,
code := Ccode,
checksum := Pchecksum

} .
testcase tc_ValidBehavior 001() { Actual parameter list

TargetAddress := GetLinkAddres<$ (11, ’111100001100’'B));

146

Using functions for calculation

function fn_CylinderVolume (in float radius, in float height)
return float
{
var float volume; // Functions may have local variables
volume := c Pi * (radius * radius) * height;
return volume
}
function fn BitStringCat (in bitstring preAndPostfix,

inout bitstring baseString)

baseString := preAndPostFix & baseString & preAndPostFix
}
function fn_GiveTheBigAnswer (out integer theAnswer) {
theAnswer := 42

147

Using functions for communicating - 1

TrafficLightTester SUT

Switch(green)

CommandStatus(ErrorNone)

LightStatus(LampOff(0), LampOff(0), LampOn(1))

Repeat 3 times -
Switch(red)

CommandStatus(ErrorNone)

LightStatus(LampOn(1), LampOff(0), LampOff(0))

testcase TC_AA 08()
runs on TrafficLight MessageInterface
{
RepeatGreenRed (3) ;
setverdict (pass) ;
stop;

148

Using functions for communication - 2

function GreenRed() runs on TrafficLight Messagelnterface

{
msgport.send (switch (RedToGreen)) ;
msgport.receive (cmd_status (ErrorNone)) ;
msgport.receive (lamp_status(green_light)) ;
msgport.send (switch (GreenToRed)) ;
msgport.receive (cmd status (ErrorNone)) ;
msgport.receive (lamp_status(red light));

} // END function GreenRed

function RepeatGreenRed (in integer nbr)
runs on TrafficLight MessageInterface ({
for (var integer j := 0; j < nbr; j:= j+l1) {
GreenRed () ;
} // END for-loop
} // END function RepeatNSBehavior

149

Using functions to compute templates

module my module {

modulepar { integer myparam := 10 }

function compute template () return template charstring

{

template charstring gtl0 :
template charstring 1tl10 := "< 10";

var template charstring result;

// variable of template type

if (myparam > 10) {
result := gtlo0;
} else {
result := 1t10;
}

return result;

150

151

Chapter 5: Advanced Constructs

* Alternative behavior

* Advanced templates

* Advanced communication

* Standard programming constructs

® Functions

A

152

Testing concept: definitions of altstep

¢ Altsteps are similar to functions but more limited — altsteps consist
of a single alternative (alt) statement block

° Altsteps are used:
— To structure alternatives in an alt-statement
— To reuse a set of alternatives

— To express default behavior

* An altstep is denoted using the altstep-keyword

"> 10"; // locally defined

Example of an altstep

}

alt {

[1 as_MyAltstepl ()

// Some code inserted here..

altstep as_MyAltstepl() runs on MyComponentType {
[] MyPort.receive (temp_SomeMessage) { // Do something }

[1 any timer.timeout { // Do something }

testcase tc_MyTestCasel() runs on MyComponentType {

[1 MyPort.receive (temp MyMessage) { setverdict(pass) }

153

A

Default-Behaviour for

154

Testing concept: default behavior

testcase Test () runs on
MyComponentType
{

var default TestDefault := null;
TestDefault := activate (
DefaultDef ()) ;

Mrc Port

Timer.start;

Port.send (A) ; A()
alt {
[] Port.receive (B) {

setverdict (pass) ;
: EW, B()

[] Port.receive(c) { | |F—go=——
setverdict (pass) ; co
}

}

Error Handling i

Timer.stop;

}

-l deactivate (TestDefault) ;

* With altstep and default, desired behavior specification is separated from error
handling to a large extent

* Specification of Error handling can be re-used

* Direct Reference to the Specification (where Error Handling is usually not covered)

Error handling and defaults

° The SUT possibly responds in an unexpected way, which is why we
need to be able to handle erroneous behavior and alternative

behavior neatly

* To handle errors default
behaviors can be activated
(activate) and deactivated
(deactivate)

* Variables of default type are
used to declare handling of
defaults

— Must be initialized to null

— These variables store a handle to an
activated default. They are used in
the deactivate statement.

155

// declaring a default variable
var default TestDefault :=
null;

// Choosing altstep def as
// default behavior
TestDefault := activate(def()):;

// deactivating the default
deactivate (TestDefault) ;

// deactivating all defaults
deactivate;

156

Default details

¢ A default altstep is appended at the end of all alternatives and also
after all other blocking statements, such as message receive and
timeout statements

* For default expansion, single blocking statements are treated as alt-
blocks with one alternative

* A default is valid from the moment it is activated, until termination of
the component or its deactivation, also in all called functions. This is
a difference between TTCN-2 and TTCN-3.

° An altstep, that should be enabled as default, must have only “in”
parameters (no timers as parameters)

* Multiple activated defaults can be used: for all components there is
a list that stores the defaults and their respective
activation/deactivation order

* The latest activated default is applied first

157

Use of default and altstep

altstep def Default() runs on HostType {

[] RetransTimer.timeout { // timeout RetransTimer
setverdict (fail); }

[1] any timer.timeout { // checks for any timeout
setverdict (inconc) ; }

[] IP.receive {
// checks for any improper message
setverdict (fail); }

} // END altstep Default

Use of default and altstep

testcase TC_AA 09() runs on HostType {

var default defaultVar := null;
defaultVar := activate (def_ Default())

// Some more code here...

IP.receive (RouterAdvertisement) ;

setverdict(pass); // test OK

deactivate (defaultVar) ;

} // END testcase TC_AA 09()

158

Expansion of the default

testcase TC_AA 09() runs on HostType {
//
alt {
[1] IP.receive (RouterAdvertisement) ({
setverdict(pass); } // test case OK
[] RetransTimer.timeout { // timeout RetransTimer
setverdict (fail); }
[1 any timer.timeout { // checks for any timeout
setverdict (inconc) ; }
[1 IP.receive {// checks for any improper message
setverdict (fail); }
} // END alt
} // END testcase TC_AA 09()

159

160

Chapter 6: concurrency

* Defining the test configuration

Motivation

° Concurrency is needed when we want to test the SUT using more
than one tester simultaneously

* Example scenario: testing a telephone network
with two phone connections

™ \,sm

Motivation — test sequences

Test sequence from TesterA

| Masterl |TesterA | INetwork |
Start
LiftHook
DialTone
CallUp
CallTone
Connected

Test sequence from TesterB

|Master I lTeslerB | |Netw0rk |

Start

Connected

RingTone

LiftHook

==

B

161 162
Motivation — different test sequences Parallel test components
One possible test sequence Another possible test sequence
| Master | | TesterA | | TesterB | | Network I | Master I-I‘ | TesterA | | TesterB | | Network I Test System
s > S s 7 o - L "~ ——___ | Components of some
> > component type
L DialTone . DialTone
T =N ‘ L
=/ => cae /| '> | Connection of
» K CauITun;e KiingTZ PTC PTC - two ports
- CallTone
LiftHook Connected [Mapping of a Port to
P— > B LitHook Test System Interface BN the Test System
< £ v v Interface
" Connected o Connected T
SUT
163 164

Chapter 6: concurrency

* Why testing concurrently?

165

Creation of PTCs and configurations

* The MTC is created automatically when
a test case is started

— The type of the MTC is specified in the
test case definition (runs on)

— If no test system interface (TSI)
component type is specified, the TSl is
the same component type as the MTC.
All ports are automatically mapped

— If a test system interface (TSI) is
specified in the test case (system), the
test system interface differs from the
MTC, and ports are not automatically
mapped

* Other components must be created
explicitly using the create command,
any component can create new
components

166

type component TSIType {
port IPHostPortType IP pcol,
port IPHostPortType IP pco2

}

type component MTCType {
port SCP_MTCType SCP

}

testcase TC_AA 06()

runs on MTCType
system TSIType {

// Parallel Test Behaviour
// goes here

Creating components

type component PTCType {
port SCP_PTCType SCP;
port IPHostPortType IP
}

testcase TC_AA 06 ()
runs on MTCType
system TSIType

{

// creation of components

.create;

PTCType
ost2 :=
RICType.create ("Tester?

// mMore—eede——

Test system

MTC
PTC
-
PTC ()
Test System Interface
O—O—

SUT

167

Two operation modes for components

* Normal components: components are automatically stopped at the
end of the executed behavior function

var PTCType ptcname;

ptcname := PTCType.create ("Instancename");

* Alive components: components can execute multiple behavior

functions (one after the other)

var PTCType ptcname;

ptcname := PTCType.create ("Instancename'") alive;

168

Connecting and mapping

* After creation of the components we need to connect ports between
MTC/PTC components and map ports between an MTC/PTC component
and the test system interface — TSI

— The mtc-keyword identifies the MTC, system identifies the TSI instance and the
self-keyword identifies the currently executing MTC/PTC

* Without connecting/mapping a component cannot communicate with the
outside world

* When connecting port A and port B, the in list of port A must match the out
list of port B and vice versa

* When mapping port A and port B, the in list of port A must match the in list
of port B, and the out list of port A must match the out list of port B

169

Connecting and mapping

testcase TC AA 06()
runs on MTCType
system TSIType {

// Creation of the PTCs...
// connecting and mapping
connect (Hostl:SCP, mtc:SCP) ;
connect (Host2:SCP, mtc:SCP);

map (Host2:IP, system:IP pco2)
// more code. ..

}

map (Hostl:IP, system:IP pcol);

Test system
MTC
PTC
-
‘
Test System Interface
O—O—

SUT

170

Unconnect and unmap

* Connections and mappings can be undone, to change configuration during
the runtime of the test

° Syntax is the same as for connect and map, but shortcuts are available

unconnect (Host1l:SCP, mtc:SCP) ;

// Unconnects specific connection
// A PTC unconnects its own port
// A PTC unconnects all its ports
unconnect (Hostl:all port);

// Unconnects all ports of a component
unconnect (all component:all port); // Unconnects everything
unmap (Hostl:IP, system:IP pcol);

// Unmaps a specific mapping
unmap (IP) ; // A PTC unmaps its own port
unmap; // A PTC unmaps all its ports
unmap (Hostl:all port); // unmaps all ports of a component
unmap (all component:all port); // unmaps everything

unconnect (SCP) ;
unconnect;

171

Chapter 6: concurrency

* Why testing concurrently?

* Defining the test configuration

172

173

Starting test components

* Once components are created and connected/mapped, they can be started

* The behavior to be executed by the component is given in the start
command

— The behavior is defined as a function
* Components can also be stopped using the stop command

— Only the execution of test behavior is stopped. Alive components will be ready to
execute another behavior function after the operation

— Non-alive components will be destroyed after the operation
— Components can stop themselves, or other components
* Components can be destroyed using the kill command

— Does the same as stop. Additionally, for alive components, this also destroys
the component

— Components can kill themselves, or other components

174

Querying test components

* The running operation returns a boolean value based on whether
the component is running or not

® The alive operation returns a boolean value based on weather the
component is already executing or ready to execute behavior, or not

* The done operation can only be executed when the component has
completed its behavior — similar semantics to timeout

® The killed operation can only be executed when the component has
been destroyed — similar semantics to timeout

Running concurrent test components

testcase TC_AA 06() runs on MTCType system TSIType {
// Creating the Components
// Mapping and Connecting the Ports
Hostl.start (TS_AA Resend());
Host2.start (TS_AA Resend());

// starting the PTCs with behavior defined in function
TS_AA Resend()

Hostl.done; // blocking/waiting until hostl is done
if (Host2.running) ({
Host2.stop
}
stop; // Stops the MTC
} // more TTCN-3 code...

175

176

Component references

* One local port may be connected to several remote ports (one-to-many
mapping)

* Component references can be used to specify to which component a
message is sent or from which component we are expecting a message

° Broadcast / multicast with the same syntax as addressing

var MyPTCType MyPTC 1;

MyPTC_1 := MyPTCType.create;

// ... Connecting and starting MyPTC 1 not shown
MyPort.receive (temp MyHelloMessage) from MyPTC 1;

// The receive event is executable only if the message
// matches the template and comes from MyPTC_ 1

MyPort.send (temp MyAnsweringMessage) to MyPTC 1;

177

Module summary

° We can have several components executing simultaneously
* Only the MTC is created automatically
° Other components can be created at any time during the test case

execution

° Dealing with components:

— Creating (create)

— Connecting (connect) and mapping (map) the ports of the components
— Starting (start) behavior on components
— Stopping (stop) and testing (running)

178

Publicly Available Test Suites

* DMR (Digital Mobile Radio)
Standardized Conformance Test Suite, written at ETSI

* Dynamic Host Configuration Protocol (DHCPv6)
Conformance Testsuite, written at Fraunhofer FOKUS
Comes with Codec, SUT, and Platform Adapter in Java

° IPv6
Conformance Testsuite, for the Core part, validated in ETSI IPv6 testbed
Other parts (Mobility, Security) will follow

* SIP (Voice over IP with the Session Initiation Protocol)
Standardized Conformance test suite written at ETSI

* WiMax (802.16)
Ongoing development

179

Nice to have... Ten3)

® There exists one off-the-shelf textbook about TTCN-3:

An Introduction to

\ }/'et 2L Tl

COLIN WILLCOCK
THOMAS DEIB
STEPHAN TOBIES
STEFAN KEIL
FEDERICO ENGLER
STEPHAN SCHULZ

with a forewor d by ANTHONY WILES

¥WILEY

°The TTCN-3 community is very lively,
look at http://www.ttcn-3.org/

°There is a regular TTCN-3 user
conference, where users meet the
language authors and steer the evolutions
of the language

*The standard documents can be
downloaded from:

*http://www.ttcn-3.org/StandardSuite.htm

