Sémantique - Master Informatique - Examen 2016-2017 - Session 1

Consignes. Durée 2h30. Tout document ou dispositif électronique est interdit. Le barème est donné à titre indicatif.

Exercice 1 (8 points) Pour simplifier le problème, on va considérer un ' λ -calcul sans λ ' (SIC!) mais avec constructeurs de couple, projection, injection et sélecteur de cas. La syntaxe des termes est donc la suivante :

```
\begin{array}{lll} M ::= & x \mid y \mid \dots & (variables) \\ & & \mathsf{apl}(M,M) & (application) \\ & & \mathsf{pair}(M,M) & (couple) \\ & & \mathsf{pil}(M) & (première\ projection) \\ & & \mathsf{inl}(M) & (première\ injection) \\ & & \mathsf{in2}(M) & (deuxième\ injection) \\ & & \mathsf{case}(M,M,M) & (s\'electeur\ de\ cas) \end{array}
```

Les règles de réduction sont les suivantes où C est un contexte avec un trou dans le langage en question (notez que comme il n'y a pas de λ il n'y a pas de β règle non plus!) :

$$\begin{array}{ccc} C[\mathsf{pi1}(\mathsf{pair}(M_1,M_2))] & \to & C[M_1] \\ C[\mathsf{pi2}(\mathsf{pair}(M_1,M_2))] & \to & C[M_2] \\ C[\mathsf{case}(\mathsf{in1}(M),N_1,N_2)] & \to & C[\mathsf{apl}(N_1,M)] \\ C[\mathsf{case}(\mathsf{in2}(M),N_1,N_2)] & \to & C[\mathsf{apl}(N_2,M)] \end{array}$$

Montrez ou donnez un contre-exemple aux assertions suivantes.

- 1. Le système de réduction termine.
- 2. Le système de réduction est confluent.

On introduit maintenant un système de typage propositionnel où le types ont la syntaxe suivante :

$$A ::= t \mid s \mid \dots$$
 (variables de type)
 $A \to A$ (type fonctionnel)
 $A \times A$ (type produit)
 $A + A$ (type somme)

Un contexte de type Γ a la forme usuelle $x_1:A_1,\ldots,x_n:A_n$ et les règles de typage sont les suivantes (les règles pour pi2 et in2 sont symétriques et elles sont omises):

$$\begin{array}{ll} \underline{x:A\in\Gamma} \\ \hline \Gamma\vdash x:A \\ \hline \Gamma\vdash M:A\to B \quad \Gamma\vdash N:A \\ \hline \Gamma\vdash M_i:A_i \quad i=1,2 \\ \hline \Gamma\vdash \mathsf{pair}(M_1,M_2):A_1\times A_2 \\ \hline \Gamma\vdash \mathsf{in1}(M):A_1 \\ \hline \Gamma\vdash \mathsf{in1}(M):A_1+A_2 \\ \hline \end{array} \qquad \begin{array}{ll} \underline{\Gamma\vdash M:A\to B \quad \Gamma\vdash N:A} \\ \hline \Gamma\vdash \mathsf{apl}(M,N):B \\ \hline \Gamma\vdash M:A_1\times A_2 \\ \hline \Gamma\vdash \mathsf{pi1}(M):A_1 \\ \hline \Gamma\vdash \mathsf{m1}(M):A_1+A_2 \\ \hline \Gamma\vdash \mathsf{case}(M,N_1,N_2):B \end{array}$$

Montrez ou donnez un contre-exemple aux assertions suivants.

- 3. Le typage est preservé par réduction : si $\Gamma \vdash M : A$ et $M \to N$ alors $\Gamma \vdash N : A$.
- 4. Le typage assure la terminaison : si $\Gamma \vdash M$: A alors toute suite de réduction qui commence par M termine.

Exercice 2 (6 points) On se place dans le cadre de l'inférence de types simples dans un style à la Curry. On rappelle les règles :

$$\begin{array}{c|c} x:A\in\Gamma \\ \hline \Gamma\vdash x:A \end{array} \quad \begin{array}{c|c} \Gamma,x:A\vdash M:B \\ \hline \Gamma\vdash \lambda x.M:A\to B \end{array} \quad \begin{array}{c|c} \Gamma\vdash M:A\to B \quad \Gamma\vdash N:A \\ \hline \Gamma\vdash MN:B \end{array}$$

Soient $K \equiv \lambda x.\lambda y.x$ et $E \equiv \lambda x.\lambda y.\lambda w.Kw(\lambda f.\lambda p.p(fx)(fy))$. Rappel: l'application associe à quuche et l'application a priorité sur l'abstraction.

- 1. Calculez le type principal du λ -terme E.
- 2. Soient M_1 et M_2 deux λ -termes avec types principaux A_1 et A_2 , respectivement. Calculez le type principal du λ -terme :

$$\lambda f.E(fM_1)M_2$$

 $o\grave{u} \ f \notin \mathsf{fv}(M_1M_2).$

Exercice 3 (6 points) On considère le λ -calcul avec appel par nom dont les règles de réduction à petits pas sur les λ -termes clos sont les suivantes :

$$\frac{M \to M'}{MN \to M'N} \qquad \frac{}{(\lambda x.M)N \to [N/x]M} .$$

On écrit aussi $M \Downarrow N$ si $M \stackrel{*}{=} N$ et N ne réduit pas. Le pre-ordre contextuel est défini sur les λ -termes ouverts par : $M \leq_C N$ si pour tout contexte C fermant $C[M] \Downarrow$ implique $C[N] \Downarrow$. D'autre part, \leq_S est la plus grande relation binaire S sur les λ -termes clos telle que si $(M,N) \in S$ alors (1) $M \Downarrow$ implique $N \Downarrow$ et (2) pour tout P clos, $(MP,NP) \in S$. Si M,N sont des λ -termes ouverts alors on écrit $M \leq_S N$ si pour toute substitution fermante σ on $a: \sigma M \leq_S \sigma N$. On sait que \leq_S coı̈ncide avec le pre-ordre contextuel \leq_C .

1. Soit \leq_{IO} une relation sur les λ -termes clos définie par :

$$M \leq_{IO} N \ si \ \forall P \ clos \ MP \Downarrow \ implique \ NP \Downarrow$$

Montrez que \leq_{IO} n'est pas stable par contextes.

2. Soit \leq_{IO^*} une autre relation sur les λ -termes clos définie par :

$$M \leq_{IO^*} N$$
 si pour tout $n \geq 0, P_1, \ldots, P_n$ clos, $MP_1 \cdots P_n \Downarrow$ implique $NP_1 \cdots P_n \Downarrow$.

Montrez que \leq_{IO^*} coïncide avec \leq_S .

Solutions

Solution de l'exercice 1 Toutes les assertions sont vraies.

- 1. Si M est un terme soit |M| le nombre de noeuds dans sa représentation en tant que arbre. Il est immédiat de vérifier que si $M \to N$ alors |M| > |N|. Il suit que toute suite de réduction termine et en effet sa longueur est bornée par la taille du terme.
- 2. Comme le système termine il suffit de montrer la confluence locale (lemme de Newman). Il y a 4 règles et les seuls cas intéressants se présentent quand une règle en contient une autre. On liste les cas à considérer selon la règle extérieure :
 - pi1. La règle interne peut être dans M_1 ou M_2 . Si elle est dans M_1 soit M'_1 le terme obtenu en réduisant la règle interne. On a :

$$C[\mathsf{pi1}(\mathsf{pair}(M_1, M_2)))] \to C[M_1], \qquad C[\mathsf{pi1}(\mathsf{pair}(M_1', M_2)))] \to C[M_1']$$

On peut donc clore le diagramme avec un pas de réduction de chaque côté. Si la règle interne est dans M_2 alors on a :

$$C[\operatorname{pi1}(\operatorname{pair}(M_1, M_2)))] \to C[M_1], \qquad C[\operatorname{pi1}(\operatorname{pair}(M_1, M_2')))] \to C[M_1]$$

et on peut clôre le diagramme avec 1 pas d'un côté et 0 pas dans l'autre.

- pi2. Cas symétrique du cas pi1.
- in 1. La règle interne peut être dans M, N_1 ou N_2 et les deux derniers cas sont symétriques. L'analyse est similaire à celle effectué pour pi 1
- in 2. Cas symétrique du cas in 1.

Conclusion : non seulement le système est localement confluent mais on peut montrer une propriété plus forte : si $M \to N_1, N_2$ alors il existe P tel que $N_i \to P$ ou $N_i = P$ pour i = 1, 2.

- 3. La preuve se fait par récurrence sur la hauteur de la preuve de $\Gamma \vdash M : A$, la taille du contexte C qui contient le redex et analyse des redex.
- 4. Le système termine déjà sans typage!

SOLUTION DE L'EXERCICE 2

- 1. Le type principal du λ -terme E est $t \to (t \to (s \to s))$. Le fait que f est appliqué à x et y force l'égalité des types de x et y. D'autre part, puisque le type principal de K est $t \to s \to t$, le type de w doit être égal au type du résultat.
- 2. Le type principal du λ -terme $\lambda f.E(fM_1)M_2$, for $f \notin \mathsf{fv}(M_1M_2)$, est $(A_1 \to A_2) \to (s \to s)$. La fonction f s'applique au λ -terme M_1 et en se basant sur (1), le type du résultat de f doit être égal au type de M_2 .

SOLUTION DE L'EXERCICE 3

1. Par exemple, on prend:

$$\begin{array}{ll} M & \equiv \lambda x.\lambda y.I \\ N & \equiv \lambda x.\lambda y.\Omega \\ C & = [\]I \end{array}$$

On a:

$$M \leq_{IO} N$$
 et $C[M] \not \leq_{IO} C[N]$.

2. Comme \leq_S coïncide avec \leq_C , on sait que : $M \leq_S N$ implique $M \leq_{IO^*} N$. La réciproque suit de l'observation que \leq_{IO^*} est une simulation.