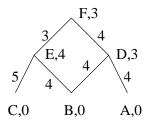

Université Paris 7 - Master 1 Informatique - Intelligence Artificielle

Examen du 9 janvier 2006 - Durée : 2 heures

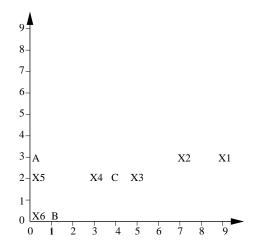
Informations: Tous les documents reliés sont autorisés. Le barème est donné à titre indicatif et peut être modifié. Répondez uniquement à l'intérieur des espaces encadrés.


Considérez l'arbre de jeu suivant:

Question 1 (2 points) Donnez des valeurs **initiales** à α et β de sorte que l'algorithme α - β coup<u>e exactement</u> les branches a et b, si on parcourt l'arbre de gauche à droite.

$$\alpha = \beta = \beta$$

Considerez le graphe suivant. Le cout de chaque chemin est indiqué ainsi que la valeur heuristique h de chaque état. L'état initial est F. Les états finaux sont A,B et C.



Question 2 (1 points) Quelle est le coût du chemin trouvé par la recherche gloutonne ?

Question 3 (1 points) Quelle est le coût du chemin trouvé par la recherche à coût uniforme ?

Question 4 (1 points) Donnez une valeur de l'heuristique admissible h pour le nœud E pour que la recherche gloutonne trouve le meilleur chemin.

Considérez les points suivants :

X1=(9,3), X2=(7,3), X3=(5,2), X4=(3,2), X5=(0,2), X6=(0,0), A=(0,3), B=(1,0), C=(4,2)

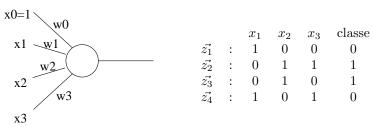
Question 5 (2 points) En appliquant l'algorithme k-means avec distance euclidienne et les trois barycentres initiaux A, B et C sur l'ensemble des points $\{X1, X2, X3, X4, X5, X6\}$ on obtient à la fin trois groupes avec les trois barycentres suivants:

$$A = \boxed{\qquad} B = \boxed{\qquad} C = \boxed{\qquad}$$

Question 6 (1 point) En appliquant l'algorithme du regroupement hiérarchique avec lien complet on obtient après trois étapes les trois classes $\{X1, X2\}, \{X3, X4\}$ et $\{X5, X6\}$. Lesquelles de ces trois classes regroupe l'algorithme ensuite?

On considere un perceptron special avec trois entrees x_1 x_2 , et x_3 , trois poids w_1 , w_2 et w_3 et deux seuils θ_1 et θ_2 . La sortie de ce perceptron spécial est 1, si $\theta_1 < w_1 * x_1 + w_2 * x_2 + w_3 * x_3 < \theta_2$ et 0 sinon.

Question 7 (1 point) Donnez w_1 , w_2 , w_3 , θ_1 et θ_2 de sorte que le perceptron classifie correctement l'échantillon suivant:


x_1	x_2	x_3	classe
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	0

$$w_1 = \boxed{ \quad w_2 = \boxed{ \quad w_3 = \boxed{ \quad \theta_1 = \boxed{ \quad \text{et } \theta_2 = \boxed{ \quad }}}}$$

Question 8 (2 points) Complétez les classes de l'échantillon suivant de sorte qu'on **ne** peut trouver **aucun** perceptron spécial qui le classifie correctement.

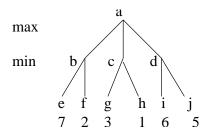
x_1	x_2	x_3	classe
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	
1	0	0	0
1	0	1	
1	1	0	
1	1	1	0

Considérez le perceptron et l'échantillon suivant :

Question 9 (1 points) Donnez des valeurs aux poids w_0, w_1, w_2 et w_3 de sorte que le perceptron classifie correctement l'échantillon. $w_0 = w_1 = w_2 = w_3 =$

Question 10 (1 points) Donnez des valeurs aux poids w_0, w_1, w_2 et w_3 de sorte que le perceptron classifie correctement l'échantillon inversé (vecteur $\vec{z_1}$ classe 1, $\vec{z_2}$ classe 0, $\vec{z_3}$ classe 0, $\vec{z_4}$ classe 1)

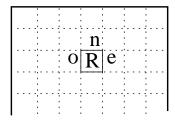
$$w_0 = \boxed{ } w_1 = \boxed{ } w_2 = \boxed{ } w_3 = \boxed{ }$$


Considérez l'échantillon suivant :

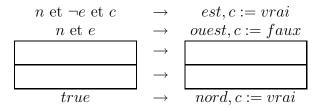
 $\vec{y_1}$: 0 0 1 1 $\vec{y_2}$: 0 1 1 1 $\vec{y_3}$: 1 1 0 0 $\vec{y_4}$: 1 0 0 1

Question 11 (2 points) Si on applique l'algorithme d'apprentissage par correction d'erreur en commençant par le vecteur $\vec{w}=(0,0,0,0)$ on obtient le vecteur de poids (à quatre dimensions, le premier pour le seuil) suivant :

Question 12 (1 points) On veut construire un arbre de décision pour l'échantillon. On considère le test t qui teste la dernière composante du vecteur. Donnez le gain réalisé par ce test en utilisant la mesure gini :


Considérez l'arbre de jeu suivant:

Question 13 (1 points) Si on applique l'algorithme SSS* à l'arbre on obtient après un certain nombre de pas la pile (e, f, 7), (i, f, 6), (g, f, 3). Après une étape supplémentaire de l'algorithme on obtient la pile:


Question 14 (1 point) En tout, combien des six feuilles sont évaluées par l'algorithme ?

On considère un robot dans un espace rectangulaire. Le robot a trois capteurs booléens (e,o,n) qui indiquent si dans cette direction il y a un mur (capteur correspondant est vrai) ou pas. Il peut faire trois actions : aller au nord, à l'ouest et à l'est.

Le robot devrait aller vers le nord jusqu'au mur. Ensuite il devrait longer le mur vers l'est. Quand il arrive dans un coin, il devrait faire demi-tour. Le robot à un état c qui est un booléen (au début vrai).

Question 15 (2 points) Complétez le système de productions suivant pour accomplir cette tâche.

