Génie logiciel avancé

Mihaela Sighireanu

UFR d'Informatique Paris Diderot, LIAFA, 175 rue Chevaleret, Bureau 6A7 http://www.liafa.jussieu.fr/~sighirea/cours/genielog/

Spécification formelle: Types de données abstraits (ADT)

Introduction Objectifs

Objectifs

- Montrer comment les techniques de spécification formelles aident à découvrir des problèmes dans la spécification du système.
- Définir et utiliser les techniques algébriques de spécification (ADT) pour spécifier les interfaces.
- (Cours suivants :) Définir et utiliser des techniques basées sur les modèles pour la spécification des comportements.

Résumé

- Introduction
 - Objectifs
 - Méthodes formelles
 - Spécification formelle
- 2 Types de données abstraits (ADT)
 - Motivation
 - Signature
 - Termes
 - Axiomes
 - Spécification algébrique
 - Spécification incrémentale
 - Exemple projet
 - Utilisation des ADT

Méthodes formelles

- Les spécifications formelles font partie d'une collection de techniques connues sur le nom de "méthodes formelles"
- Les méthodes formelles ont à la base des représentations mathématiques du logiciel ou du matériel.
- Les méthodes formelles contiennent :
 - Spécifications formelles,
 - Analyse et preuve de spécifications,
 - Développement par raffinement des spécifications,
 - Vérification de programmes.
- Prévues représenter LA technique de développement, elles sont utilisées que dans des domaines "critiques" à cause de leur coût (matériel, en temps et humain).
- Le principal bénéfice de leur utilisation est la réduction du nombre d'erreurs dans le logiciel.



Classes de spécifications formelles

• Algébriques : le système est spécifié en termes d'ensembles, d'opérations et de leur relation.

Ex. séquentiel : Act One, Larch, OBJ.

Ex. concurrent: Lotos.

• Basés sur les modèles : le système est spécifié en termes de modèle à états et utilisent des opérations qui changent l'état du sytème.

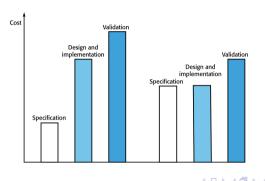
Ex. séquentiel : Z, VDM, B.

Ex. concurrent : CSP, réseaux de Pétri, automates hiérarchiques (statecharts).

Spécification formelle

Coût de la spécification formelle

- La spécification formelle demande plus d'effort dans les phases avant du projet.
- Elle réduit les erreurs (incomplétude ou inconsistance) de la spécification des charges.
- Ainsi, le nombre de changements du projet à cause d'un problème de spécification de charges est réduit.



Types de données abstraits (ADT) Motivation

Motivation

Spécification formelle d'interfaces :

- Les grands systèmes sont décomposés en sous-systèmes qui se composent à travers d'interfaces bien définies.
- La spécification des interfaces des sous-systèmes permet leur développement independant.
- Les interfaces peuvent être définies comme des types de données abstraits ou des interfaces de classes.
- L'approche algébrique pour la spécification formelle des interfaces est souhaitable car elle permet pour les opérations de l'interface :
 - de les définir formellement.
 - d'analyser formellement (preuve) leur comportement,
 - de dériver l'implémentation d'un objet ou d'un type en partant de sa définition formelle.

Structure d'une spécification d'ADT

4 parties :

Introduction : définit la sorte (nom du type) et déclare les autres spécifications

utilisées.

Description : (optionnelle) décrit de manière informelle les opérations de la sorte.

Opérations : définit la syntaxe des opérations dans l'interface et leurs

paramètres.

Axiomes: définit la sémantique des opérations sous forme d'équations.

Spécification (sort + opérations) = signature.

◆ロ → ◆昼 → ◆ 昼 → ○ 章 ・ 夕 へ ○

Types de données abstraits (ADT) Signature

Signature

Sort : le(s) type(s) à définir.

Sighireanu (UFR Info P7)

Opérations : plusieurs classes par rapport au type défini

- constructeur : définit les valeurs du type ; exemples : true, false.
- inspecteur : renvoie les composantes du type ; exemple : tête de la liste.
- observateur : décrit la relation (les propriétés) du type avec les autres types ; exemple: longueur liste.

Les axiomes doivent définir complètement et correctement les opérations (voir une méthode plus loin).

◆ロ → ◆回 → ◆ き → ◆ き ・ り へ ○

```
Types de données abstraits (ADT) Signature
Exemple : spécification ADT des booléens
type BOOLEAN is
    sorts bool
    (* Type boolean avec les opérations usuelles *)
      false, true : -> bool
                   : bool -> bool
      _and_, _or_, _xor_, _implies_, _iff_, _eq_, _ne_
                   : bool, bool -> bool
    egns
    forall x, y : bool
    ofsort bool
         not (true)
                       = false;
         not (false) = true;
         x and true
         x and false = false;
         x or true
                       = true:
         x or false
                       = (x \text{ and not } (y)) \text{ or } (y \text{ and not } (x));
         x xor v
         x implies y = y or not (x);
         x iff y
                       = (x implies y) and (y implies x);
         x eq y
                       = x iff y;
         x ne v
                       = x xor y;
endtype
                                                         4□ > 4□ > 4□ > 4□ > 4□ > 900
```

```
Types de données abstraits (ADT) Signature
type STRING is imports CHARACTER, NATURAL, BOOLEAN
    sorts string
    opns
                      : -> string
        append
                      : string, string -> string
        add
                      : char, string -> string
        size
                      : string -> nat
                      : string -> bool
        isEmpty
                      : string, string -> bool
                      : string -> char
        first
    egns
    forall x, y : string, c,d : char
    ofsort bool
        isEmpty(new)
                                       = true;
        isEmpty(add (c, x))
                                       = false;
        eq(new, new)
                                       = true;
        eq(add(c, x), new)
                                       = false;
        eq(new, add(c, x))
                                       = false;
        eq(add(c, x), add(d, y)) = eq(c, d) and eq(x, y);
    ofsort nat
        size(new)
                           = 0:
        size(add(c, x)) = succ(size(x));
    ofsort string
        append(new, x)
        append(add(c, x), y) = add(c, append(x,y)); \langle \Box \rangle \langle \Box \rangle
   Mihaela Sighireanu (UFR Info P7)
```

Exemple : ADT chaînes de caractères

- Opérations nécessaires :
 - Chaîne vide (new)
 - Concaténation de deux chaînes (append)
 - Concaténation d'un caractère et d'une chaîne (add)
 - Calcul de la longueur (size)
 - Test de chaîne vide (isEmpty)
 - Egalité de chaînes (eq)
 - Sélection du premier caractère (first)
- Types nécessaires pour définir l'ADT :
 - char : le type caractère
 - nat : le type entier naturel
 - bool : le type booléen

Types de données abstraits (ADT) Termes

Mathématiques : termes

Definition (Termes d'une signature)

Soit $\Sigma = \langle S, F \rangle$ une signature et X un ensemble S-typé de variables. L'ensemble de termes de Σ utilisant les variables de X est un ensemble S-typé $T_{\Sigma,X}$ avec chaque ensemble $(T_{\Sigma,X})_s$ définit inductivement par :

- chaque variable $x \in X_s$ est un terme de sort s,
- chaque constante $f \in F_{\epsilon,s}$ est une terme de sort s,
- pour toute opération non constante $f \in F_{w,s}$ avec $w = s_1 \cdots s_n$ et pour tout *n*-uple de termes (t_1,\ldots,t_n) tel que $t_i\in (T_{\Sigma,X})_{s_i}$ $(1\leq i\leq n)$ alors $f(t_1,\ldots,t_n)$ est un terme de sort s.

Exemples: append(new, x), x and (y xor z), ...

Mathématiques : signature

Algèbre hétérogène (Birkhoff).

Definition (Ensemble *S*-typé)

Soit $S \subset \mathbf{S}$ un ensemble fini de sortes. Un ensemble S-typé A est l'union disjointe d'une famille d'ensembles indexée par $S: A = (\bigcup_{s \in S} A_s)$.

Exemple : l'ensemble des valeurs défini par la spécification STRING est un ensemble *S*-typé avec $S = \{bool, char, nat, string\}$.

Definition (Signature)

Une signature est un couple $\Sigma = \langle S, F \rangle$, avec $S \subset \mathbf{S}$ un ensemble fini de sortes et $F = (F_{w,s})_{w \in S^*, s \in S}$ est un ensemble $(S^* \times S)$ -typé de noms d'opérations en **F**. Les $f \in F_{\epsilon,s}$ sont appelées des constantes.

Types de données abstraits (ADT) Axiomes

Mathématiques : axiomes

Definition (Axiome simple)

Soit $\Sigma = \langle S, F \rangle$ une signature et X un ensemble S-typé de variables. Les axiomes sur les variables de X sont des égalités de termes t=t' tel que $t,t'\in (T_{\Sigma,X})_s$.

Remarque : les variables de X sont quantifiées universellement.

Exemple:first(add(c, new)) = c;

Definition (Axiome conditionnelle)

Mihaela Sighireanu (UFR Info P7)

Soit $\Sigma = \langle S, F \rangle$ une signature et X un ensemble S-typé de variables. Les axiomes conditionnelles sur les variables de X sont $t_0 = t'_0 \wedge \ldots t_n = t'_n \Rightarrow t = t'$ tel que $t, t' \in (T_{\Sigma,X})_s, t_0, t'_0 \in (T_{\Sigma,X})_{s_0}, \ldots, t_n, t'_n \in (T_{\Sigma,X})_{s_n}$

Exemple : ajout d'un élément dans un arbre binaire de recherche lt(d,data(t))=true => add(d,t) = node(add(d,left(t)),data(t),right(t));

Ecriture d'axiomes

Attention : ne pas écrire des axiomes contradictoires ou oublier des cas!

Méthode pour obtenir la complétude et la correction hiérarchique : Pour chaque opération non-constructeur :

- écrire une axiome avec la partie gauche un terme qui commence avec le nom de l'opération :
- 2 pour chaque paramètre de l'opération (de gauche à droite) appliquer le principe suivant :
 - utiliser une variable pour ce paramètre :
 - si une équation est difficile à écrire avec une variable, écrire les équations en décomposant cette variable à l'aide de constructeurs.
 - si un constructeur n'est pas suffisant pour écrire l'équation, utiliser les conditions qui décomposent en cas d'utilisation.

Mathématiques : spécification algébrique

Definition (Spécification algébrique)

Une spécification algébrique multi-sortes Spec = (S, F, X, AX) est une signature $\Sigma = (S, F)$ et un ensemble d'axiomes AX sur un ensemble de variables X.

On utilisera aussi la notation $Spec = (\Sigma, X, AX)$.

La sémantique d'une spécification algébrique est donnée par un modèle, c'est-à-dire une implémentation possible de la spécification.

Exemple: spécification ADT NATURAL

Equations pour l'opération _ + _ : nat, nat -> nat : Décomposition du premier paramètre :

```
egns forall x, y: nat
   ofsort nat
   0 + y = y;
   succ(x) + y = succ(x + y);
```

Que fait-on pour la commutativité : x + y = y + x;

Exercice: Ecrire les équations pour _ > _ : nat, nat -> bool

Mathématiques : spécification algébrique

Definition (Modèle)

Soit $Spec = (\Sigma, X, AX)$ une spécification algébrique. L'ensemble de ses modèles Mod(Spec) est l'ensemble de Σ -algèbres M tel que $\forall ax \in AX, \forall X, M \models ax$.

Definition (Σ -algèbre)

Une Σ -algèbre est un couple $A = \langle D, O \rangle$, avec D un ensemble S-typé de valeurs $(D = D_{s_1} \cup \ldots \cup D_{s_n})$ et O est un ensemble de fonctions, tel que pour tout nom d'opération $f \in F_{w,s}$ ($w = s_1 \dots s_n$) il existe une fonction $f^A \in O$ tel que $f^A: D_{s_1} \times \ldots \times D_{s_n} \to D_{s}$.

La relation \models utilise :

- un morphisme *eval* : $T_{\Sigma} \rightarrow M$ et
- une interprétation des variables $I: X \to M$.

Alors $M \models t_1 = t_2$ ssi $\forall I$, $eval(t_1[I]) = eval(t_2[I])$

Spécification incrémentale

Pour minimiser l'effort d'écriture de spécifications, trois mécanismes sont disponibles:

- 1 Importation de spécifications existantes pour re-utilisation de sortes ou d'opérations.
 - Ex.: importer BOOLEAN dans NATURAL.
- 2 Spécification générique (paramétrée) et sa concrétisation.
 - Ex. : pile d'entiers obtenue à partir d'une pile générique d'éléménts.
- 4 Héritage et extension d'une spécification.

Ex. : QUEUE est obtenue par héritage de LIST.

Types de données abstraits (ADT) Spécification incrémentale

Importation et consistance

Definition (Consistance de la composition)

Soient Spec, Spec' deux spécifications algébriques. Leur composition disjointe Spec + Spec' est consistante ssi $\forall t_1, t_2 \in T_{\Sigma \cup \Sigma'}, \forall M \in Mod(Spec), M' \in$ $Mod(Spec'), M'' \in Mod(Spec + Spec'), M'' \models t_1 = t_2 \Rightarrow M \models t_1 = t_2.$

Exemple : pile de naturels avec les équations :

```
top(empty) = 0;
top(push(n,s)) = n;
push(n,s) = s;
```

hireanu (UFR Info P7)

permet de démontrer que 0=succ(0), donc tous les naturels seront dans la même classe d'équivalence!

straits (ADT) Spécification incrémentale

Importation de spécifications

- Importation multiple par liste de spécifications importées après imports.
- Correspond à une union disjointe de spécifications algébriques. Attention : à la surcharge de noms d'opérations!
- Peut amener des problèmes :
 - d'inconsistance : des classes d'équivalences de termes sont confondues et
 - d'incomplétude : des classes d'équivalences de termes sont introduites.
- Toutefois, il faut utiliser l'importation sans retenue car c'est le moyen le plus simple pour avoir des spécification modulaires.

Types de données abstraits (ADT) Spécification incrémentale

Importation et complétude

Definition (Complétude de la composition)

Soient Spec, Spec' deux spécifications algébriques. Leur composition disjointe Spec + Spec' est complète ssi $\forall s \in S$, $\forall t \in (T_{\Sigma \cup \Sigma'})_s$, $\exists t_1 \in (T_{\Sigma})_s$ tel que $\forall M'' \in Mod(Spec + Spec'), M'' \models t_1 = t.$

Exemple : pile de naturels avec l'unique équation :

```
top(push(n,s))) = n;
```

permet d'introduire des classes d'équivalence de termes pour la sort nat, par exemple top(empty), succ(top(empty)), ...!

Spécification générique : définition

Par exemple : Arbre binaire de recherche générique.

```
type BTREE is
                                                  add(d,t) = node(add(d,left(t)),data(t),right(t));
 imports BOOLEAN
                                                lt(d.data(t))=false =>
 formalsorts elem
                                                  add(d,t) = node(left(t),data(t),add(d,right(t)));
 formalopns
                                                left(nil) = nil:
   Undef : -> elem
                                                left(node(1,d,r)) = 1;
                                                right(nil) = nil;
   eq, lt : elem, elem -> bool
 sorts btree
                                                right(node(l.d.r)) = r:
 opns
                                                data(nil) = Undef:
   nil : -> btree
                                                data(node(l,d,r)) = d;
   node : btree. elem. btree -> btree
                                                ofsort bool
                                                isEmpty(nil) = true;
   add : elem, btree -> btree
   left, right : btree -> btree
                                                isEmpty(node(1,d,r)) = false;
   data : btree -> elem
                                                isin(nil.e) = false:
   isEmptv : btree -> bool
                                                ea(d.e)=true =>
   isin : elem, btree -> bool
                                                 isin(node(1,d,r),e) = true;
                                                lt(e,d)=true =>
 eans
   forall t,1,r : btree, d,e : elem
                                                 isin(node(l,d,r),e) = isin(l,e);
   ofsort btree
                                                lt(e,d)=false and eq(e,d)=false =>
                                                 isin(node(1,d,r),e) = isin(r,e);
   add(d,nil) = node(nil,d,nil);
   lt(d,data(t))=true =>
                                            endtype
                                                        ◆□▶ ◆□▶ ◆■▶ ◆■ ◆ のQ@
```

Sighireanu (UFR Info P7)

Cours 4: ADT 23 / 28

Types de données abstraits (ADT) Spécification incrémentale

Rappel : spécification algébrique NATURAL

```
type NATURAL is
                                               succ(x) - succ(y) = x - y;
 imports BOOLEAN
                                               x - NaN = NaN;
                                               NaN - v = NaN;
 sorts nat
 opns
                                             ofsort nat
   0 : -> nat
                                               0 * y = 0;
   succ : nat -> nat
                                               succ(x) * y = (x * y) + y;
   NaN : -> nat
                                              NaN * y = NaN;
    _+_, _-_ : nat, nat -> nat
                                              x * y = y * x;
    _*_, _**_ : nat, nat -> nat
                                             ofsort nat
   _eq_, _ne_, _lt_, _le_,
                                               x ** 0 = succ(0):
                                              x ** succ(y) = x * (x ** y);
    _gt_, _ge_ : nat, nat -> bool
    _mod_, _div_ : nat, nat -> nat
                                               x ** NaN = NaN;
   min, max, gcd, scm : nat, nat -> nat
                                               NaN ** v = NaN;
                                             ofsort bool
                                               0 eq 0 = true;
 forall x, y : nat
 ofsort nat
                                               0 eq succ(y) = false;
 succ(NaN) = NaN;
                                               0 eq NaN = false;
   0 + x = x:
                                               succ(x) eq 0 = false;
   succ(x) + y = succ(x + y);
                                               succ(x) eq succ(y) = x eq y;
                                               succ(x) eq NaN = false:
   NaN + x = NaN:
                                             ofsort bool
   x + y = y + x;
  ofsort nat
                                              0 lt 0 = false;
   x - 0 = x:
                                               0 lt succ(y) = true;
                                               (* NaN is a negative integer ★) ✓ ०००
   0 - succ(y) = NaN;
  Mihaela Sighireanu (UFR Info P7)
```

Spécification générique : concrétisation

La concrétisation des formals est faite avec une spécification d'ADT qui contient des sortes et des opérations (éventuellement renommés) qui satisfont les mêmes contraintes de profile.

Exemple : Arbre binaire de recherche contenant des naturels.

```
type BTREE-NAT is BTREE
 actualizedby NATURAL using
   sortnames nat for elem
             btreeNat for btree
   opnnames _=_ for eq
             < for 1t.
             NaN for Undef
endtype
```

Une opération formelle n'est pas renommé si l'opération concrète a le même nom!

Le renommage peut concerner les sortes/opérations génériques (voir btreeNat)!

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q ○

Sighireanu (UFR Info P7)

Cours 4: ADT 24 / 28

```
Types de données abstraits (ADT) Spécification incrémentale
```

```
0 lt NaN = false:
  succ(x) lt 0 = false;
  succ(x) lt succ(y) = x lt y;
  succ(x) lt NaN = false;
  NaN lt y = true;
ofsort bool
  x le y = (x lt y) or (x eq y);
ofsort bool
  x gt y = not(x le y);
ofsort bool
  x ge y = not(x lt y);
ofsort nat
 y ne 0, x lt y \Rightarrow x div y = 0;
 v ne 0, x ge v \Rightarrow
    x \, div \, y = 1 + ((x - y) \, div \, y);
  y eq 0 \Rightarrow x div y = NaN;
  NaN div y = NaN;
  x div NaN = NaN;
ofsort nat
 y ne 0, x lt y \Rightarrow x mod y = x;
  y ne 0, x ge y \Rightarrow
```

```
x \mod y = ((x - y) \mod y);
    y eq 0 \Rightarrow x mod y = NaN;
    NaN \mod y = NaN;
    x mod NaN = NaN;
  ofsort nat
    x le y \Rightarrow min (x, y) = x;
    x gt y \Rightarrow min (x, y) = y;
  ofsort nat
    x \text{ ge } v \Rightarrow \max(x, v) = x:
    x   1t   y  =>  max  (x, y)  =  x;
  ofsort nat
    x eq y, x ne 0 \Rightarrow gcd (x, y) = x;
    x lt v. x ne 0 \Rightarrow
      gcd(x, y) = gcd(x, x - y);
    x gt y, y ne 0 \Rightarrow
      gcd(x, y) = gcd(x - y, y);
    gcd(x, y) = gcd(y, x);
    gcd (NaN, y) = NaN;
  ofsort nat
    scm(x, y) = (x * y) div gcd(x, y);
endtype
```

Types de données abstraits (ADT) Spécification incrémentale

Spécification héritée : définition

- Des sortes, opérations ou équations sont ajoutées à une liste de spécifications.
- L'héritage est multiple!
- Les même problèmes de consistance et complétude que pour l'importation.

Exemple:

```
type ABELIAN-GROUP is
 extends GROUP
   egns
     x \cdot y = y \cdot x
endtype
```

Exemple: formalisation des données LIBSYS

Spécifications ADT:

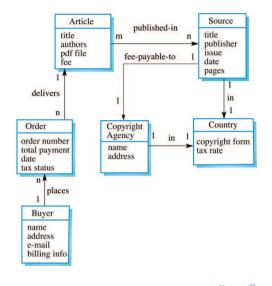
- Standard : BOOLEAN, NATURAL, STRING
- Utilitaires: DATE, PAGES, EMAIL, ADDRESS, FILE, LIST
- Principales : COUNTRY, AGENCY, SOURCE, ARTICLE, ORDER, BUYER, **AUTHOR**

Une partie de ces spécifications sont disponibles sur le site du projet.

Types de données abstraits (ADT) Exemple projet

Exemple: formalisation des données LIBSYS

Modèle relationel :



Utilisation des spécifications ADT

- Preuve des propriétés des spécifications :
 - obtenir des nouvelles théorèmes (équations) sur l'ADT. Ex.: Prouvez que succ(0)+succ(succ(0))=succ(succ(succ(0))).
 - prouver l'inconsistance = impossibilité à obtenir une implémentation,
 - prouver l'incomplétude = non déterminisme à résoudre dans l'implémentation,
 - prouver une relation hiérarchique/d'inclusion entre les spécifications (voir cours GL),
- Obtenir du code correct par construction : si la spécification des opérations est faite dans un style fonctionnel, du code peut être généré! Exemple : CAESAR.ADT de CADP.
 - nécessite de l'aide du spécificateur (quels sont les constructeurs?)
 - certaines parties peuvent être externes pour obtenir l'efficacité
 - rejet de spécifications correctes