Examen d'algorithmique

Mercredi 13 janvier 2016 12h–15h / Aucun document autorisé

Mode d'emploi : Le barème est donné à titre indicatif. La qualité de la rédaction des algorithmes et des explications sera fortement prise en compte pour la note. On peut toujours supposer une question résolue et passer à la suite.

Exercice 1 : Dérouler et analyser (2,5 points)

On considère l'algorithme ci-dessous :

```
Def P(T,bg,bd) :
Si bg>bd Alors Retourner 0
Si bg==bd Alors Retourner T[bg]
Sinon
    m = (bg+bd)/2
    x1 = P(T,bg,m)
    x2 = P(T,m+1,bd)
    Retourner x1+x2+T[m]
```

- 1. Décrire ce que fait l'algorithme P appelé sur le tableau [4,1,8,7,5,3,2,9,14,17,6] avec bg = 0 et bd = 10. On détaillera tous les appels récursifs effectués. Quelle est sa complexité pour un tableau de taille n?
- 2. Et que devient la complexité si on remplace les lignes 6 et 7 par :

```
x1 = P(T,bg,(bg+m)/2)

x2 = P(T,(m+1+bd)/2 +1,bd)
```

Exercice 2: MinMax (2,5 points)

Donner un algorithme "diviser-pour-régner" qui retourne une paire correspondant à l'indice du min et l'indice du max d'un tableau :

IndiceMinMax (tableau de valeurs T, entiers: bg , bd) : paire d'entiers Donner sa complexité et justifier l'algorithme.

Exercice 3 : Plus longue sous-séquence stable (5 points)

Étant donné un tableau d'entiers T d'indices $0, \ldots, |T| - 1$, on cherche à calculer la taille du <u>sous-tableau stable</u> le plus long de T. Un sous-tableau stable est une suite continue d'indices du tableau contenant la même valeur. Par exemple, avec le tableau T = [1,6,8,8,8,4,2,1,1,8,4,4], la valeur recherchée est T = [1,6,8,8,8,4], la valeur

- Proposer un algorithme Diviser-pour-régner pour résoudre ce problème. L'algorithme sera de la forme algo1(T, l, u) et renverra la valeur recherchée (la taille du sous-tableau stable le plus long) pour la partie de T entre les indices l et u. Appliquer votre algorithme sur T = [1,6,8,8,8,4,2,1,1,8,4,4] Donner sa complexité.
- 2. Amélioration : proposer un autre algorithme Diviser-pour-régner algo2(T, l, u) qui renvoie comme résultat un triplet d'entiers (p, t, s) où t est la taille du sous-tableau stable le plus long pour la partie de T entre les indices l et u (à vous de voir ce que peuvent être p et s!). Quelle est sa complexité? L'appliquer sur l'exemple.
- 3. Proposer un algorithme de programmation dynamique pour résoudre ce problème. On pourra construire des tableaux Nb[-] et Nbf[-] tels que :
 - Nb[i] est la taille d'un sous-tableau stable le plus long dans la partie de T restreinte aux indices $0, \ldots, i$, et
 - Nbf[i] est la taille d'un sous-tableau stable le plus long dans la partie de T restreinte aux indices $0, \ldots, i$ et se terminant à l'indice i.

Appliquer votre algorithme sur T = [1,6,8,8,8,4,2,1,1,8,4,4]Donner sa complexité.

4. Reprendre l'algorithme de la question 3 en évitant l'utilisation des tableaux. Quelle est la complexité de cet algorithme?

Exercice 4: Les cartons de livres (6 points)

On dispose de n livres classés par ordre alphabétique. Chacun a un poids p_i (un entier positif) avec $1 \le i \le n$. On veut répartir ces livres dans des cartons **en gardant l'ordre alphabétique** (donc le livre i sera rangé avec le livre i-1 et/ou le livre i+1, ou tout seul). On dispose de k cartons $(k \ge 1)$.

Par exemple, on peut prendre la séquence de 12 livres suivante :

numéro du livre	1	2	3	4	5	6	7	8	9	10	11	12
poids (en g)	200	150	400	100	500	400	400	100	150	75	50	100

1. On suppose d'abord que les cartons ont chacun une capacité maximale de M grammes et on va chercher à minimiser le nombre de cartons utilisés pour ranger tous les livres (sans dépasser leur capacité M!). Proposer un algorithme glouton pour ce problème. Justifier votre algorithme.

Dans l'exemple ci-dessus des 12 livres ci-dessus avec 3 cartons et M=1500, on obtiendrait la répartition suivante :

1	2	3	4	5	6	7	8	9	10	11	12	
200	150	400	100	500	400	400	100	150	75	50	100	
carton 1 (1350)					carton 2 (1275)							carton 3 (0)

Appliquer votre algorithme sur le même exemple mais avec 3 cartons de capacité M=1000.

2. Après plusieurs consultations chez le kiné, nos déménageurs renoncent aux économies de cartons et changent de stratégie : désormais, ils cherchent à répartir équitablement les livres dans les k cartons. On supposera qu'on peut toujours les ranger dans les k cartons et on ne s'intéressera donc plus à la capacité maximale M de chaque carton. Il s'agit donc de répartir les n livres en k paquets "équitables".

Pour partager équitablement les livres (toujours en gardant l'ordre alphabétique!), on va procéder comme suit : on va chercher à répartir tous les livres dans les k cartons en minimisant le poids du plus carton le plus lourd. Le problème se définit donc comme suit :

Données : une séquence de n livres avec des poids (entiers positifs) $\{p_1, \ldots, p_n\}$ et un nombre k de cartons.

Résultat : une répartition en k paquets respectant l'ordre initial des livres et pour laquelle le poids du carton le plus lourd est minimal.

Par exemple, dans l'exemple ci-dessus des 12 livres ci-dessus avec 3 cartons, on obtiendrait la répartition suivante (et le poids du carton le plus lourd est 900) :

1	2	3	4	5	6	7	8	9	10	11	12
200	150	400	100	500	400	400	100	150	75	50	100
ca	rton	1 (85)	0)	carto	n 2 (900)		car	ton 3	(87)	5)	

L'objectif est ici d'écrire un algorithme de programmation dynamique pour résoudre ce problème. Pour cela, nous allons construire un tableau M[i,c] pour $1 \le i \le n$ et $1 \le c \le k$ tel que M[i,c] correspondra au poids **minimal** du carton le plus lourd **pour toutes les répartitions** des livres $s_1 \dots s_i$ dans c paquets.

(a) Écrire un algorithme pour calculer le tableau M[-,-] pour n livres et $\underline{k}=\underline{2}$. Appliquer l'algorithme sur l'exemple ci-dessus.

On s'intéresse désormais au cas général avec $k \ge 1$:

- (b) Que vaut M[1,c] pour $1 \le c \le k$?
- (c) Que vaut M[i,1] pour $1 \leq i \leq n$?
- (d) Exprimer M[i,c] en fonction des éléments M[j,c-1] avec $1 \leq j \leq i \leq n$ et $1 \leq c \leq k$ et des poids p_1, \ldots, p_i . On regardera toutes les façons de remplir le dernier carton (numéro c) en réutilisant les calculs précédents pour les autres cartons.
- (e) Donner un algorithme pour calculer M[i,c]. Quelle est sa complexité?
- (f) Illustrer ce calcul en donnant les valeurs de M[-,-] pour l'exemple précédent des 12 livres mais avec k=4.
- (g) Comment retrouver une répartition optimale à partir du tableau M[-,-], des poids p_1, \ldots, p_n et de k?

Exercice 5 : Les vaches de Narayana (4 points)

On s'intéresse au problème posé par Narayana (un mathématicien indien) au 14e siècle : "Chaque année, une vache met au monde un veau. À partir de la quatrième année,

chaque veau donne à son tour et au début de chaque année, naissance à un veau. Quel est le nombre de vaches et de veaux après une durée de 17 ans?"

Au départ, on a une unique vache. Après l'année 1, on a donc une vache et un veau. Après l'année 2, on a une vache (toujours la même!), et deux veaux (un nouveau, et l'autre qui est dans sa seconde année). Après l'année 3, on une vache et 3 veaux. Après l'année 4, on a deux vaches et 4 veaux (le premier veau est devenu vache et a donné naissance à un veau...). Etc.

On peut donc remplir un tableau comme ci-dessous :

année	vaches	veaux de 1 an	veaux de 2 ans	veaux de 3 ans
	v_i	x_i^1	x_i^2	x_i^3
1	1	1	0	0
2	1	1	1	0
3	1	1	1	1
4	2	2	1	1
		• • •	• • •	• • •
17	v_{17}	x_{17}^{1}	x_{17}^2	x_{17}^{3}

L'objectif est donc de calculer la somme $T_{17} = v_{17} + x_{17}^1 + x_{17}^2 + x_{17}^3$.

- 1. Compléter le tableau ci-dessus jusqu'à l'année 8.
- 2. Écrire les relations entre $v_{n+1}, x_{n+1}^1, x_{n+1}^2, x_{n+1}^3$ et les termes précédents des suites. En déduire une définition simple de la suite v_n du nombre de vaches. Donner un algorithme pour calculer v_n et en déduire un calcul du nombre total d'animaux T_n après l'année n. Donner sa complexité.

Donner T_{12} le nombre d'animaux après l'année 12.

3. Soit $Nb_{n,k}$ le nombre d'animaux de la k-ème génération après l'année n. Après l'année 1, il y a un animal de la première génération (la première vache) et un de la seconde génération (le veau). Après l'année 4, il y a un animal de la première génération, 4 de la seconde génération, et un de la troisième génération (le veau du premier veau devenu vache), etc.

Écrire la relation entre $Nb_{n,k}$ et les termes précédents $Nb_{n',k'}$ avec $k' \leq k$ et $n' \leq n$.

PS: On trouvera une jolie solution musicale à ce problème dans la pièce de Tom Johnson (voir sur youtube).

Annexe: Master theorem

Soient $a \ge 1$, b > 1, f(n) une fonction positive et $t(n) = \begin{cases} a \cdot t(\frac{n}{b}) + f(n) & \text{si } n > 1 \\ \Theta(1) & \text{si } n = 1 \end{cases}$;

- Si $f(n) = O(n^{\log_b a \epsilon})$ avec $\epsilon > 0$, alors $t(n) = \Theta(n^{\log_b a})$
- Si $f(n) = \Theta(n^{\log_b a})$, alors $t(n) = \Theta(n^{\log_b a} \cdot \log n)$
- Si $f(n) = \Omega(n^{\log_b a + \epsilon})$ pour $\epsilon > 0$ et si $\exists c < 1$ tel que $a \cdot f(\frac{n}{b}) \leqslant c \cdot f(n)$ pour n assez grand, alors $t(n) = \Theta(f(n))$