Université Paris Diderot Machines Virtuelles
L3 Info Année 2016-2017

Examen
mardi 16 mai 2017

Tout document papier est autorisé. Les ordinateurs, les téléphones portables, comme tout
autre moyen de communication vers ’extérieur, doivent étre éteints. Le temps & disposition est

de 2h30.
On recommande de bien lire I’énoncé d’un exercice avant de commencer 3 le résoudre.

Exercice 1 (AST). Pour chacune des expressions suivantes, dessinez son arbre de syntaxe en
annotant pour chaque sous-expression sa valeur et son environment.

1. let x = 4 in 4*x

2. let x = 2 in if (let x = 3 in x = 2) then x+1 else 0

Par exemple, I'expression
let x = 3 in let x = 1 + x in (2%x)

donne P’arbre de syntaxe annoté comme suit

1 X 2 p'd

vaut 1 vaut 3 vaut 2 vaut 4
env=[(x,3)] énv=[(x,3)] env=[(x,4),(x,3)] env=[(x,4),(x,3)]
“+ *
X vaut 4 vaut 8
env=[(x,3)] env=[(x,4),(x,3)]
3 et /
X vaut 3 vaut 8
env=[] env=[(x,3)]
o /

vaut 8

env=[]

Exercice 2 (Compilation & la main de OCaml). Pour chacune des expressions (1)-(2) du Exer-
cice 1, donner un bytecode de OCamlrun equivalent. Par exemple, ’expression

let x = 3 in let x = 1 + x in (2%x)
corresponde au bytecode :

const 3 push acc 0 push const 1 addint
push acc 0 push <const 2 mulint return 3

Exercice 3 (Représentation données structurées). Supposons d’avoir défini un type t comme
suit :

type t = A | Bof t list | C of t¥t | D | E of (t*t) list
Pour chacune des données structurées suivantes, donnez unes expression de ocaml correspon-
dante :

1. [0: [0: 1a [0: [1: Oa 0a]l [0: Oa [0: [1: 1a 0al 0aJ111]

2..[0: 0 [0:.[0: [2:0a] [0y [2: [0: [0: ©a [1: 0a 1a]l-0all Oﬂ]ﬂ

Exercice 4. Pour chacune des listes d’instructions suivantes, deviner 'expression de OCaml
qui I'a générée :

(i). (ii).

closurerec 1, O

const 1

push
closurerec 1, 0 const 4
const 4 push
push acc 2
acc 1 appterm 2, 4
appterm 1, 3 restart

Ll: acc D Ll: grab 1
push acc 0
const O
egint e
9 i const 0O
branchifnot L2 egint
const 1 branchifnot L2
return 1 acc 1
L2: acc O return 2

offsetint -1 L2: const 2
push push
offsetclosure 0O acc 2
apply 1 mulint
push push
const 2 acc 1
mulint offsetint -1
return 1

push

offsetclosure 0
appterm 2, 4

Exercice 5. Considerons une methode £ dans une classe MaClasse qui est de la forme

class MaClasse{
public static int f(int x, int y){

F

Trouver des instructions JAVA pour £ qui générent les byte-codes suivants. Décrire aussi leur
exécution, lorsque les valeurs des parameétres de f sont respectivement x = 4,y = 2.

public static int f(int, int);
descriptor: (II)I
flags: ACC_PUBLIC, ACC_STATIC
Code:
stack=2, locals=2, args_size=2
0: iload_0O
iconst_2
irem
ifne 8
iload_1
ireturn
iload_1
iload_1
10: imul
11: ireturn

O© 00 ~NOoO WN -

public static int f(int, int);
descriptor: (II)I
flags: ACC_PUBLIC, ACC_STATIC
Code:
stack=2, locals=4, args_size=2
0: icomst_1
: istore_2
: iconst_2
: istore_3
iload_3
iload_0
if_icmpgt 34
iload_3
10: iload_1
11: if_icmpgt 34
14: iload_0
15: iload_3
16: irem
17: ifne 28
20: iload_3
21: iload_1
22: irem
23: ifne 28
26: iload_3
27: istore_2
28: iinc 3, 1
31: goto 4
34: iload_2
35: ireturn

O OOk WN -

Exercice 6 (Compilation & la main de JAVA). Soit la classe

public class IntArray{
public static boolean isEmpty(int [] t){
return t == null;

¥

public static int sumLoop(int [] t, int fromIndex, int toIndex)q{
int x = 0;
while (fromIndex <= toIndex){
x += t[fromIndex];
fromIndex++;
}

return Xx;

3

public static int sumRec(int [] t, int fromIndex, int toIndex){
if (fromIndex == toIndex) return t[fromIndex];
else return t[fromIndex] + sumRec(t, fromIndex+1l, toIndex);

}

Traduire en bytecode de JVM les méthodes isEmpty, sumLoop et sumRec, en explicitant pour
chaque méthode la dimension de la pile, le nombre des variables locales et des arguments.

Annexe OCamlrun

acc n Peeks the n+1-th element of the stack and puts it into the accumulator.

apply n Sets extraArgs to n-1. Sets pc to the code value of the accumulator. Then sets the environ-
ment to the value of the accumulator.

appterm n, s Slides the n top elements from the stack towards bottom of s - n positions. Then
sets pc to the code value of the accumulator, the environment to the accumulator, and increases
extraArgs by n-1.

return n Pops n elements from the stack. If extraArgs is strictly positive then it is decremented,
pc is set to the code value of the accumulator, and the environment is set to the value of the
accumulator. Otherwise, three values are popped from the stack and assigned to pc, environment
and extraArgs.

restart Computes n, the number of arguments, as the size of the environment minus 2. Then pushes
elements of the environment from index n - 1 to 2 onto the stack. Environment is set to the
element of index 1 of the environment and extraArgs is increased by n.

grab n If extraArgs is greater than or equal to n, then extraArgs is decreased by n. Otherwise,
creates a closure of extraArgs+3 elements in the accumulator. Code of this closure is set to pc -
3, element of index 1 is set to the environment and other elements are set to values popped from
the stack. Then pc, environment, and extraArgs are popped from the stack.

closure ofs, n If n is greater than zero then the accumulator is pushed onto the stack. A closure of
n + 1 elements is created into the accumulator. The code value of the closure is set to pc + ofs.
Then, the other elements of the closure are set to values popped from the stack.

closurerec ofs, n as closure ofs, n and push.
offsetclosure n Sets the accumulator to the value of the n-th closure relatively to the environment.
branchifnot ofs Performs an conditional jump by adding ofs to pc if the accumulator is zero.

eqint Sets the accumulator to a non-zero value or to zero whether the accumulator is equal to the
value popped from the stack or not.

const n Sets the accumulator to n.
addint Sets the accumulator to the sum of the accumulator and the value popped from the stack.
multint Sets the accumulator to the product of the accumulator by the value popped from the stack.

Itint Sets the accumulator to a non-zero value or to zero whether the accumulator is lower than the
value popped from the stack or not.

offsetint ofs Adds ofs to the accumulator.
pop n Pops n elements from the stack.
push Pushes the accumulator onto the stack.

Annexe JVM

aload_n The n must be an index into the local variable array of the current frame. The local variable
at n must contain a reference. The objectref in the local variable at n is pushed onto the operand
stack.

iaload The arrayref must be of type reference and must refer to an array whose components are of
type long. The index must be of type int. Both arrayref and index are popped from the operand
stack. The long value in the component of the array at index is retrieved and pushed onto the
operand stack.

istoren The n must be an index into the local variable array of the current frame. The value on
the top of the operand stack must be of type int. It is popped from the operand stack, and the
value of the local variable at n is set to value.

areturn The objectref must be of type reference and must refer to an object of a type that is
assignment compatible with the type represented by the return descriptor of the current method.
If the current method is a synchronized method, the monitor entered or reentered on invocation
of the method is updated and possibly exited as if by execution of a monitorexit instruction in
the current thread. If no exception is thrown, objectref is popped from the operand stack of the
current frame and pushed onto the operand stack of the frame of the invoker. Any other values
on the operand stack of the current method are discarded.
The interpreter then reinstates the frame of the invoker and returns control to the invoker.

goto branchbytel branchbyte2 The unsigned bytes branchbytel and branchbyte2 are used to
construct a signed 16-bit branchoffset, where branchoffset is (branchbytel << 8) | branchbyte2.
Execution proceeds at that offset from the address of the opcode of this goto instruction. The
target address must be that of an opcode -of an instruction within the method that contains this
goto instruction.

iadd Both valuel and value2 must be of type int. The values are popped from the operand stack.
The int result is valuel + value2. The result is pushed onto the operand stack.

iconst_n Push the int constant n (-1, 0, 1, 2, 3, 4 or 5) onto the operand stack.

idiv Both valuel and value2 must be of type int. The values are popped from the operand stack.
The int result is the value of the Java programming language expression valuel / value2. The
result is pushed onto the operand stack.

irem Both valuel and value2 must be of type int. The values are popped from the operand stack.
The int result is valuel — (valuel /value2) * value2. The result is pushed onto the operand stack.
The result of the irem instruction is such that (a/b) * b+ (a%b) is equal to a.

-

s

if_icmp<cond> branchbytel branchbyte2 Both valuel and value2 must be of type int. They
are both popped from the operand stack and compared. All comparisons are signed. The possible
comparisons are : €q, ne, 1t, le, gt, ge.
If the comparison succeeds, the unsigned branchbytel and branchbyte2 are used to construct
a signed 16-bit offset, where the offset is calculated to be (branchbytel << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the opcode of this if_icmp<cond>
instruction. The target address must be that of an opcode of an instruction within the method
that contains this if icmp<cond> instruction.
Otherwise, execution proceeds at the address of the instruction following this if_icmp<cond>
instruction.

if<cond> branchbytel branchbyte2 The value must be of type int. It is popped from the ope-
rand stack and compared against zero. Cfr if icmp<cond>.

ifnonnull branchtypel branchtype2 The value must be of type reference. It is popped from the
operand stack. If value is not null, the unsigned branchbytel and branchbyte2 are used to construct
a signed 16-bit offset, where the offset is calculated to be (branchbytel << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the opcode of this ifnonnull instruction.
The target address must be that of an opcode of an instruction within the method that contains
this ifnonnull instruction.
Otherwise, execution proceeds at the address of the instruction following this ifnonnull instruction.

iinc index const The index is an unsigned byte that must be an index into the local variable array
of the current frame. The const is an immediate signed byte. The local variable at index must
contain an int. The value const is first sign-extended to an int, and then the local variable at
index is incremented by that amount.

imul Both valuel and value2 must be of type int. The values are popped from the operand stack.
The int result is valuel * value2. The result is pushed onto the operand stack.

invokestatic indexbytel indexbyte2 The unsigned indexbytel and indexbyte2 are used to construct
an index into the run-time constant pool of the current class, where the value of the index is (in-
dexbytel << 8) | indexbyte2. The run-time constant pool item at that index must be a symbolic
reference to a method, which gives the name and descriptor of the method as well as a symbolic
reference to the class in which the method is to be found. The named method is resolved. The re-
solved method must not be an instance initialization method or the class or interface initialization
method. It must be static, and therefore cannot be abstract.
On successful resolution of the method, the class that declared the resolved method is initialized
if that class has not already been initialized.
The operand stack must contain nargs argument values, where the number, type, and order of
the values must be consistent with the descriptor of the resolved method.

If the method is not native, the nargs argument values are popped from the operand stack. A
new frame is created on the Java Virtual Machine stack for the method being invoked. The nargs
argument values are consecutively made the values of local variables of the new frame, with argl
in local variable 0 (or, if argl is of type long or double, in local variables 0 and 1) and so on.
Any argument value that is of a floating-point type undergoes value set conversion prior to being
stored in a local variable. The new frame is then made current, and the Java Virtual Machine pc
is set to the opcode of the first instruction of the method to be invoked. Execution continues with
the first instruction of the method.

ireturn cfr areturn.

iload_n cfr aloadn.

