Université Paris Diderot Machines Virtuelles
L3 Info Année 2015-2016

Examen — session 2
vendredi 24 mai 2016

Tout document papier est autorisé. Les ordinateurs, les téléphones portables, comme tout
autre moyen de communication vers 'extérieur, doivent étre éteints. Le temps & disposition est
de 2h30.

Les questions sont indépendantes mais il est parfois nécessaire (ou recommandé) d’utiliser
les fonctions définies précédemment (méme si elles sont non traitées) ou prédéfinies dans la
bibliotheque standard (notamment dans le module sur les listes).

On recommande de bien lire ’énoncé d’un exercice avant de commencer & le résoudre.

Exercice 1 (Compilation & la main de OCaml). Pour chacune des expressions suivantes, donner
un bytecode de OCamlrun equivalent. :

1. let x = 4 in (x*x) + 2*x

2. let x = 3 in (let x = x+1 in x+2)+x

3. let x = (1,2) in if snd x > fst x then x else (snd x, fst x)
4. let a = 3 in let f x = x¥a in (f 2) + a

Exercice 2 (Représentation données structurées).

Supposons d’avoir défini un type t comme suit :

type ’at =Aof ’a | B | Cof ’a*’a|D| Eof (Pat)x* ("at)

Pour chacune des données structurées suivantes, donner une expression de OCaml qui lui
corresponde :

1. [2: [1: 3 0] 0a]
2. [0: [1: 3 0] [0: [2: [2: 1a [0: 111 0Oal 0Oall

Exercice 3. Pour chacune des listes d’instructions suivantes, deviner l'expression de OCaml
qui ’a générée :

(i). (ii). (i)

const (05 [0: 1:2]43] closurerec 1, 0O closurerec 1, 0O

push const 3 const 2
acc 0 push push
getfield 1 const 2 acc 1
push push apply 1
acc 1 acc 2 push
getfield O appterm 2, 4 const 3
getfield 1 restart push
push Ll: grab 1 acc 1
acc 2 acc 0 appterm 1, 4
getfield O push restart
getfield O const O L1: grab 1
makeblock 3, O eqint acc 0O
return 2 branchifnot L2 push
const 1 const 0
return 2 eqint
L2: acc 1 branchifnot L2
push const 1
ace '1 return 2
offsetint -1 L2+ ace™l
push push
offsetclosure 0 acc 1
apply 2 offsetint -1
push push
acc 2 offsetclosure 0
mulint apply 2
return 2 push
dece 2
mulint
return 2

Exercice 4. Quelle est ’architecture générale de la JVM 7 En quoi differe-telle de la machine
virtuelle de OCaml? (on attend pas plus de 5-6 lignes).

Exercice 5 (Compilation & la main de JAVA). Soit la classe

public class MaClasse{
public static int factRec(int x){
if (% <= 1) vetuen 1
else return x*(factRec (x-1));

}
public static int factWhile(int x){
ing r = 1;
while(x > 1){
T = I*X;
X==;
}
return r;

1)

Traduire en bytecode de JVM les méthodes factRec et factWhile, en explicitant pour chaque
méthode la dimension de la pile, le nombre des variables locales et des arguments.

Exercice 6. Considérons une méthode £ dans une classe MaClasse. Trouver des instructions
JAVA pour £ qui générent les byte-codes suivants. Décrire aussi leur exécution, lorsque les valeurs
des parametres de £ sont respectivement x = 3,y = 1.

L,
public static int f(int, int);
descriptor: (II)I
flags: ACC_PUBLIC, ACC_STATIC
Code:
stack=2, locals=2, args_size=2
0: iload_O
1: ifge 8
4: iload_0O
5: iload_0
6: imul
7: ireturn
8: iload_0
9: ineg
10: iload_O
11: imul
12: ireturn
2.

public static int[] f(int, int);
descriptor: (II)[I
flags: ACC_PUBLIC, ACC_STATIC
Code:
stack=3, locals=4, args_size=2
0: iload-1
ifgt 6
aconst_null
areturn
iload_1
newarray int
astore_2
10: iconst_0
11: istore_3

O N O O =

12: iload_3
13: iload_1
14: if_icmpge 27
17: aload_2
18: iload_3

19: iload_0O
20: iastore

21: iine 3,1
24: goto 12
27: aload_2

28: areturn

Annexe OCamlrun

acc n Peeks the n+1-th element of the stack and puts it into the accumulator.

apply n Sets extraArgs to n-1. Sets pc to the code value of the accumulator. Then sets the environ-
ment to the value of the accumulator.

appterm n, s Slides the n top elements from the stack towards bottom of s - n positions. Then
sets pc to the code value of the accumulator, the environment to the accumulator, and increases
extraArgs by n-1.

return n Pops n elements from the stack. If extraArgs is strictly positive then it is decremented,
pc is set to the code value of the accumulator, and the environment is set to the value of the
accumulator. Otherwise, three values are popped from the stack and assigned to pc, environment
and extraArgs.

restart Computes n, the number of arguments, as the size of the environment minus 2. Then pushes
elements of the environment from index n - 1 to 2 onto the stack. Environment is set to the
element of index 1 of the environment and extraArgs is increased by n.

grab n If extraArgs is greater than or equal to n, then extraArgs is decreased by n. Otherwise,
creates a closure of extraArgs+3 elements in the accumulator. Code of this closure is set to pc -
3, element of index 1 is set to the environment and other elements are set to values popped from
the stack. Then pc, environment, and extraArgs are popped from the stack.

closure ofs, n If n is greater than zero then the accumulator is pushed onto the stack. A closure of
n + 1 elements is created into the accumulator. The code value of the closure is set to pc + ofs.
Then, the other elements of the closure are set to values popped from the stack.

closurerec ofs, n as closure ofs, n and push.
offsetclosure n Sets the accumulator to the value of the n-th closure relatively to the environment.

makeblock n, t Creates a block of n elements, with tag t. The element of index 0 of the block is
set to the value of the accumulator, the n -1 other elements are popped from the stack. Then the
accumulator is set to the created block.

getfield n Sets the accumulator to the value of the field of index n of the accumulator.
branchifnot ofs Performs an conditional jump by adding ofs to pc if the accumulator is zero.

eqint Sets the accumulator to a non-zero value or to zero whether the accumulator is equal to the
value popped from the stack or not.

const n Sets the accumulator to n.

aconst_null Push null.

addint Sets the accumulator to the sum of the accumulator and the value popped from the stack.
multint Sets the accumulator to the product of the accumulator by the value popped from the stack.

Itint Sets the accumulator to a non-zero value or to zero whether the accumulator is lower than the
value popped from the stack or not.

offsetint ofs Adds ofs to the accumulator.

push Pushes the accumulator onto the stack.

Annexe JVM

aload n The n must be an index into the local variable array of the current frame. The local variable
at n must contain a reference. The objectref in the local variable at n is pushed onto the operand
stack.

astore_n The n must be an index into the local variable array of the current frame. The objectref
on the top of the operand stack must be of type returnAddress or of type reference. It is popped
from the operand stack, and the value of the local variable at n is set to objectref.

areturn The objectref must be of type reference and must refer to an object of a type that is
assignment compatible with the type represented by the return descriptor of the current method.
If the current method is a synchronized method, the monitor entered or reentered on invocation
of the method is updated and possibly exited as if by execution of a monitorexit instruction in
the current thread. If no exception is thrown, objectref is popped from the operand stack of the
current frame and pushed onto the operand stack of the frame of the invoker. Any other values
on the operand stack of the current method are discarded.

The interpreter then reinstates the frame of the invoker and returns control to the invoker.

goto branchbytel branchbyte2 The unsigned bytes branchbytel and branchbyte2 are used to
construct a signed 16-bit branchoffset, where branchoffset is (branchbytel << 8) | branchbyte2.
Execution proceeds at that offset from the address of the opcode of this goto instruction. The
target address must be that of an opcode of an instruction within the method that contains this
goto instruction.

iadd Both valuel and value2 must be of type int. The values are popped from the operand stack.
The int result is valuel + value2. The result is pushed onto the operand stack.

iastore The arrayref must be of type reference and must refer to an array whose components are of
type int. Both index and value must be of type int. The arrayref, index, and value are popped
from the operand stack. The int value is stored as the component of the array indexed by index.

iconst_n Push the int constant n (-1, 0, 1, 2, 3, 4 or 5) onto the operand stack.

idiv Both valuel and value2 must be of type int. The values are popped from the operand stack.
The int result is the value of the Java programming language expression valuel / value2. The
result is pushed onto the operand stack.

if icmp<cond> branchbytel branchbyte2 Both valuel and value2 must be of type int. They
are both popped from the operand stack and compared. All comparisons are signed. The possible
comparisons are : eq, ne, lt, le, gt, ge.
If the comparison succeeds, the unsigned branchbytel and branchbyte2 are used to construct
a signed 16-bit offset, where the offset is calculated to be (branchbytel << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the opcode of this if_icmp<cond>
instruction. The target address must be that of an opcode of an instruction within the method
that contains this if_icmp<cond> instruction.
Otherwise, execution proceeds at the address of the instruction following this if_.icmp<cond>
instruction.

if<cond> branchbytel branchbyte2 The value must be of type int. It is popped from the ope-
rand stack and compared against zero. Cfr if_icmp<cond>.

iinc index const The index is an unsigned byte that must be an index into the local variable array
of the current frame. The const is an immediate signed byte. The local variable at index must
contain an int. The value const is first sign-extended to an int, and then the local variable at
index is incremented by that amount.

imul Both valuel and value2 must be of type int. The values are popped from the operand stack.
The int result is valuel * value2. The result is pushed onto the operand stack.

invokestatic indexbytel indexbyte2 The unsigned indexbytel and indexbyte2 are used to construct
an index into the run-time constant pool of the current class, where the value of the index is (in-
dexbytel << 8) | indexbyte2. The run-time constant pool item at that index must be a symbolic

reference to a method, which gives the name and descriptor of the method as well as a symbolic
reference to the class in which the method is to be found. The named method is resolved. The re-
solved method must not be an instance initialization method or the class or interface initialization
method. It must be static, and therefore cannot be abstract.

On successful resolution of the method, the class that declared the resolved method is initialized
if that class has not already been initialized.

The operand stack must contain nargs argument values, where the number, type, and order of
the values must be consistent with the descriptor of the resolved method.

If the method is not native, the nargs argument values are popped from the operand stack. A
new frame is created on the Java Virtual Machine stack for the method being invoked. The nargs
argument values are consecutively made the values of local variables of the new frame, with argl
in local variable 0 (or, if argl is of type long or double, in local variables 0 and 1) and so on.
Any argument value that is of a floating-point type undergoes value set conversion prior to being
stored in a local variable. The new frame is then made current, and the Java Virtual Machine pc
is set to the opcode of the first instruction of the method to be invoked. Execution continues with
the first instruction of the method.

ireturn cfr areturn.

iload_n cfr aload.n.

isub Both valuel and value2 must be of type int. The values are popped from the operand stack.
The int result is valuel - value2. The result is pushed onto the operand stack.
For int subtraction, a-b produces the same result as a+(-b). For int values, subtraction from zero
is the same as negation.

ineg The value must be of type int. It is popped from the operand stack. The int result is the
arithmetic negation of value, -value. The result is pushed onto the operand stack.

newarray atype The count must be of type int. It is popped off the operand stack. The count
represents the number of elements in the array to be created.
The atype is a code that indicates the type of array to create. A new array whose components
are of type atype and of length count is allocated from the garbage-collected heap. A reference
arrayref to this new array object is pushed into the operand stack. Each of the elements of the
new array is initialized to the default initial value for the element type of the array type.

