Université Paris 7- Denis Diderot L3 d'Informatique Mathématiques Discrètes Examen de janvier 2010 durée 3 heures tous documents autorisés

Le but de ce problème est de montrer sur un exemple que l'intersection d'un langage algébrique et d'un langage reconnaissable est un langage algébrique.

Nota: les parties 1 et 2 sont indépendantes, mais sont toutes deux nécessaires à la résolution des parties 3 et 4, elles-mêmes indépendantes.

Partie 1

On note $Q = \{1, 2, 3, 4\}$, et on considère les deux applications de Q dans Q, notées \overline{a} et \overline{b} , définies comme suit :

Question 1: Dans le monoïde des applications de Q dans Q, on définit le produit de f par g, noté f.g, comme la composition de g par f (dans cet ordre), soit $f.g = g \circ f$. Calculer les deux applications $\overline{a}.\overline{a}$ et $\overline{b}.\overline{b}$.

Question 2 : Calculer avec soin le monoïde M engendré par \overline{a} et \overline{b} (ce monoïde se compose de 5 applications, y compris l'application identité notée 1_M). Ecrire la table de multiplication de ce monoïde.

Question 3: Dans toute la suite, A désigne l'alphabet $A = \{a, b\}$. Soit φ le morphisme de A^* dans M défini par : $\varphi(a) = \overline{a}$ et $\varphi(b) = \overline{b}$. Que valent $\varphi^{-1}(1_M)$, $\varphi^{-1}(\overline{a})$, $\varphi^{-1}(\overline{b})$, $\varphi^{-1}(\overline{b}\overline{a})$?

En déduire que le langage $R = a^+b^+$ est un langage reconnaissable.

Partie 2

Question 4 : On considère le système ${\mathcal S}$ composé d'une unique équation :

$$\left\{ S = aSbS + bSaS + 1 \right\}$$

Combien de solutions admet ce système? Calculer les approximants d'ordre 0,1,2 et 3 de la plus petite solution L de ce système. Que vaut L? (sans donner une preuve formelle, on donnera une idée de comment la mener à bien).

Question 5 : Donner une grammaire algébrique propre qui engendre $L\setminus\{1\}$.

Question 6 : Cette grammaire est-elle ambiguë ? (Justifiez votre réponse)

Question 7: Donner une grammaire sous forme normale de Greibach pour $L\setminus\{1\}$. En déduire un automate à pile simple qui reconnaît $L\setminus\{1\}$ (par pile vide).

Partie 3

Si \mathcal{A} est un automate à pile simple d'alphabet de pile Z, et de fonction de transition λ , et M un monoïde fini d'élément neutre 1_M , on définit l'automate à pile \mathcal{A}_M par la machine à pile $< A, M, Z, \lambda' >$ où $\lambda' = \{(x, m, z, h, m') \mid (x, z, h) \in \lambda, m.\varphi(x) = m'\}$, et $(1_M, z_1)$ est la configuration interne de départ si z_1 est le symbole de départ de pile de \mathcal{A} , et $M \times \{1\}$ est l'ensemble des configurations internes de reconnaissance.

Question 8 : Calculer l'automate à pile A_M pour l'automate A trouvé en question précédente et le monoïde M de la question 2.

Question 9 : Comment choisir les configurations de reconnaissance pour que $\mathcal{A}_{\mathcal{M}}$ reconnaisse $L \cap R$?

Partie 4

Soit $V' = \{S_m \mid m \in M\}$ un ensemble en bijection avec $\{S\} \times M$ (où M est toujours le monoïde défini à la question 2). On prolonge φ en un morphisme de $(A \cup V')^*$ dans M en posant $\forall m \in M, \varphi(S_m) = m$, et on définit le morphisme π de $(A \cup V')^*$ dans $(A \cup \{S\})^*$ en posant : $\forall m \in M, \pi(S_m) = S$ et $\forall a \in A, \pi(a) = a$.

Question 10: Donner 5 mots $w \in (A \cup V')^*$ tels que $\pi(w) = aSbS$. Donner 5 mots $w \in (A \cup V')^*$ tels que $\varphi(w) = \overline{ab}$. Donner tous les mots $w \in (A \cup V')^*$ tels que $\pi(w) = aSbS$ et $\varphi(w) = \overline{ab}$.

Notation : on écrit $w \in \delta_{\mathcal{S}}(x)$ pour dire que w est dans le membre droit d'une équation d'un système \mathcal{S} ayant x pour membre gauche.

On construit à partir de S un nouveau système S', dont les variables sont des éléments de V', et les équations sont définies par :

- $aS_{m_1}bS_{m_2} \in \delta_{\mathcal{S}'}(S_m) \iff aSbS \in \delta_{\mathcal{S}}(S) \text{ et } m = \varphi(a)m_1\varphi(b)m_2$
- $bS_{m_1}aS_{m_2} \in \delta_{\mathcal{S}'}(S_m) \iff bSaS \in \delta_{\mathcal{S}}(S) \text{ et } m = \varphi(b)m_1\varphi(a)m_2$
- $1 \in \delta_{\mathcal{S}'}(S_m) \iff 1 \in \delta_{\mathcal{S}}(S) \text{ et } m = \varphi(1) = 1_M$

Ceci se résume par la formule générale :

$$\left\{ \begin{array}{ll} \forall m \in M & S_m &=& \{w \in (A \cup V')^* \mid \pi(w) \in \delta_{\mathcal{S}}(S) \text{ et } \varphi(w) = m \} \end{array} \right.$$

Autrement dit, si $m \neq \varphi(1)$, l'équation ayant S_m pour membre gauche est :

$$S_m = \sum_{m=\varphi(a)m_1\varphi(b)m_2} aS_{m_1}bS_{m_2} + \sum_{m=\varphi(b)m_1\varphi(a)m_2} bS_{m_1}aS_{m_2}$$

Si $m = \varphi(1)$, l'équation ayant S_m pour membre gauche est :

$$S_m = \sum_{m=\varphi(a)m_1\varphi(b)m_2} aS_{m_1}bS_{m_2} + \sum_{m=\varphi(b)m_1\varphi(a)m_2} bS_{m_1}aS_{m_2} + 1$$

Question 11 : Construire S' en calculant explicitement les équations issues de S_m pour tous les m de M. (Certains de ces ensembles peuvent éventuellement être vides).

Question 12 : Ecrire la grammaire algébrique correspondante. La réduire vis-à-vis de $S_{\bar{a}\bar{b}}$

Question 13 : Si v est une variable du système S', on notera $L_{S'}(v)$ la composante correspondant à cette variable de la plus petite solution de ce système. Montrer par récurrence que, si $f \in L_{S'}(S_{\varphi(u)})$, alors $f \in [u]$.

Considérant le rationnel R de la question 3 qui s'écrit $\varphi^{-1}(P)$ pour $P \subset M$, on construit $\mathcal{S}_{\mathcal{R}}$ à partir de \mathcal{S}' en ajoutant une nouvelle variable s et l'équation : $s = \sum_{m \in P} S_m$. Si v est une variable du système $\mathcal{S}_{\mathcal{R}}$, on notera $L_{\mathcal{S}_{\mathcal{R}}}(v)$ la composante correspondant à cette variable de la plus petite solution de ce système.

Question 14 : Déduire de ce qui précède que $L_{\mathcal{S}_{\mathcal{R}}}(s) = L \cap R$.

Question subsidiaire : Au vu de ce qui a été fait sur cet exemple, expliquer comment faire pour établir le théorème annoncé :

L'intersection d'un langage algébrique et d'un langage reconnaissable est un langage algébrique.

Comment peut-on établir le théorème :

L'intersection d'un langage algébrique non-ambigu et d'un langage reconnaissable est un langage algébrique non-ambigu.

Comment peut-on établir le théorème :

L'intersection d'un langage algébrique déterministe et d'un langage reconnaissable est un langage algébrique déterministe.