Université Paris 7 Denis Diderot L2MI3 Analyse et Algèbre Fondamentales 2010-2011

Contrôle de connaissance du lundi 8 novembre 2010 (Durée 2 h) Documents autorisés : notes de cours/TD (les trois exercices sont indépendents)

Exercice 1 Pour tout nombre réel $p \ge 0$, soit S_p la série entière

$$\sum_{n\geq 1} \frac{z^n}{n^p} \quad (z \in \mathbb{C}).$$

On désigne par R_p le rayon de convergence de la série S_p . Pour tout $z \in \mathbb{C}$ tel que la série numérique $\sum_{n\geqslant 1} z^n/n^p$ soit convergente, on désigne par $S_p(z)$ la somme de cette série.

- 1) Calculer la valeur de R_p .
- 2) Calculer $S_0(z)$.
- 3) Calculer $S_1(x)$ pour $x \in]-R_1, R_1[$.
- 4) Pour quelles valeurs de p la somme $S_p(1)$ est bien définie?
- 5) Montrer que, pour tout p>0, la série S_p est convergente sur

$$\mathcal{D} = \{ z \in \mathbb{C} \mid |z| \leqslant 1, \ z \neq 1 \}.$$

Cette convergence est-elle uniforme?

6) Montrer que, pour tout p > 0, la fonction $S_p : \mathcal{D} \to \mathbb{C}$ est continue.

Exercice 2 Soit

$$\sum_{n \ge 0} a_n x^n \qquad (x \in \mathbb{R})$$

une série entière dont le rayon de convergence est 1, où $a_n \in \mathbb{R}$ pour tout n. Pour tout $x \in]-1,1[$, soit f(x) la somme de la série $\sum_{n\geqslant 0} a_n x^n$. On suppose que f(x) converge vers un nombre $\ell \in \mathbb{R}$ lorsque x tend vers 1.

- 1) Montrer que, si la série numérique $\sum_{n\geqslant 0}a_n$ est convergente, alors sa limite est ℓ .
- 2) Montrer que la série $\sum_{n\geqslant 0} a_n$ n'est pas nécessairement convergente en construisant un contre-exemple.
- 3) Montrer que, pour tout $x \in [-1, 1]$, et tout $n \in \mathbb{N}$, $n \ge 1$, on a

$$|x^n - 1| \leqslant n(1 - x).$$

4) Dans la suite, on suppose

$$\lim_{n \to \infty} n a_n = 0.$$

Pour tout entier $N \geqslant 1$, soient

$$A_N(x) = \sum_{n=0}^N a_n(x^n - 1), \quad B_N(x) = \sum_{n>N} a_n x^n \qquad (x \in [0, 1]).$$

TSVP

(i) Montrer que

$$|A_N(x)| \le (1-x) \sum_{n=0}^N |na_n|.$$

(ii) Montrer que

$$|B_N(x)| \leqslant \frac{1}{N(1-x)} \sup_{n>N} |na_n|.$$

(iii) En déduire que

$$\lim_{N \to \infty} \left| f(1 - 1/N) - \sum_{n=0}^{N} a_n \right| = 0$$

(iv) En déduire que la série numérique $\sum_{n\geq 0} a_n$ converge vers ℓ .

Exercice 3 Dans cet exercice, on étude la fonction

$$f(x) = \begin{cases} \exp(-1/x^4) + \sin(x) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

définie sur \mathbb{R} et à valeur dans \mathbb{R} .

- 1) Montrer que la fonction f est de classe C^{∞} sur $\mathbb{R} \setminus \{0\}$.
- 2) Montrer que la fonction f est continue en 0.
- 3) Montrer que la fonction f est de classe C^1 sur \mathbb{R} et calculer f'(x).
- 4) Montrer que la fonction f est de classe C^{∞} sur \mathbb{R} .
- 5) Déterminer la série de Taylor S(f) de f en x = 0.
- 6) Déterminer le rayon de convergence de S(f).
- 7) Déterminer l'ensemble des $t \in \mathbb{R}$ tels que la série S(f) converge en t vers f(t).