Correction du contrôle continu de PF1 (numéro 2)

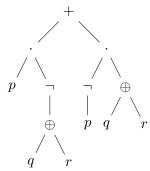
Groupe MathInfo2

11 décembre 2009

Logique propositionnelle

On considère la formule $\varphi = p \cdot (\neg (q \oplus r)) + \overline{p} \cdot (q \oplus r)$.

Exercice 1 L'arbre associé à la formule φ est le suivant :



Exercice 2 On en déduit la forme polonaise suffixée de φ : p q r \oplus \neg \cdot p \neg q r \oplus \cdot +

Exercice 3 La table de vérité de φ est :

p	q	r	$q\oplus r$	$\neg(q\oplus r)$	$p \cdot (\neg (q \oplus r))$	\overline{p}	$\overline{p}\cdot (q\oplus r)$	φ
0	0	0	0	1	0	1	0	0
0	0	1	1	0	0	1	1	1
0	1	0	1	0	0	1	1	1
0	1	1	0	1	0	1	0	0
1	0	0	0	1	1	0	0	1
1	0	1	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	1	1	0	0	1

Exercice 4 La forme normale disjonctive de φ est donc $\overline{p} \cdot \overline{q} \cdot r + \overline{p} \cdot q \cdot \overline{r} + p \cdot \overline{q} \cdot \overline{r} + p \cdot q \cdot r$.

Exercice 5 La table de vérité de la formule $\varphi' = q \cdot (\neg(p \oplus r)) + \overline{q} \cdot (p \oplus r)$ est la suivante. Elle justifie que φ et φ' sont équivalentes.

p	q	r	$p\oplus r$	$\neg(p\oplus r)$	$q\cdot (\lnot(p\oplus r))$	\overline{q}	$\overline{q}\cdot (p\oplus r)$	φ'
0	0	0	0	1	0	1	0	0
0	0	1	1	0	0	1	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	0	0	0
1	0	0	1	0	0	1	1	1
1	0	1	0	1	0	1	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	1	1	0	0	1

Exercice 6 On remarque que la valeur de la formule φ est égale au chiffre des unités du résultat de l'addition p+q+r, en tant que somme de trois chiffres $\in \{0,1\}$ dans la numération en base deux.

Opérations booléennes et bit-à-bit en Java

Exercice 7

```
a) int n = 0x35353535;
b) int n = 53;
n = n | (53 << 8);
n = n | (53 << 16);
n = n | (53 << 24);</pre>
```

Exercice 8 On se place bien dans le cas où n et m sont positifs, c'est-à-dire ont un bit de signe égal à 0.

La valeur de n & m est toujours inférieure ou égale aux valeurs de n et de m. En effet, le *i*ème bit de n & m (qui vaut 0 ou 1) est inférieur ou égal au *i*ème bit de n par définition de l'opérateur &. Il en va de même pour m.

La valeur de $\tt n$ | $\tt m$ est toujours supérieure ou égale aux valeurs de $\tt n$ et de $\tt m$. En effet, le ième bit de $\tt n$ | $\tt m$ (qui vaut 0 ou 1) est supérieur ou égal au ième bit de $\tt n$ par définition de l'opérateur |. Il en va de même pour $\tt m$.