Examen Partiel

Durée : 2 heures.

Tous les documents sont interdits, ainsi que les calculatrices et les téléphones portables. Les exercices sont indépendants entre eux.

Exercice 1.

Dans chacun des cas suivants, dire, en le justifiant, si la famille considérée est libre dans \mathbb{R}^3 et/ou génératrice de \mathbb{R}^3 .

- 1. (u_1, u_2) avec $u_1 = (1, 0, 0), u_2 = (1, 1, 1)$;
- 2. (v_1, v_2, v_3) avec $v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (1, 1, 0);$
- 3. (w_1, w_2, w_3, w_4) avec $w_1 = (1, 0, 0), w_2 = (0, 1, 0), w_3 = (1, 1, 0), w_4 = (2, -1, -1).$

Exercice 2.

Soient E le sous-ensemble de $\mathbb R$ défini par $E=\{1,2,3,4,5,6\}$ et $f:E\to E$ l'application définie par

$$\begin{cases} f(n) = 2n - 1, & \text{si } 1 \le n \le 3, \\ f(n) = 7 - n, & \text{si } 4 \le n \le 6. \end{cases}$$

- 1. Calculer f(1), f(2), f(3), f(4), f(5), f(6).
- 2. Déterminer $f(\{2, 4, 6\})$.
- 3. Déterminer $f^{-1}(\{3,4,5\})$.
- 4. L'application f est-elle injective? Justifier votre réponse.
- 5. L'application f est-elle surjective? Justifier votre réponse.

Exercice 3.

- 1. Déterminer les racines carrées du nombre complexe 1 + 2i.
- 2. Résoudre dans $\mathbb C$ l'équation

$$z^2 - 2z - 2i = 0.$$

Exercice 4.

- 1. Donner sous formes exponentielles et cartésiennes les racines cubiques complexes de 27i.
- 2. À l'aide du binome de Newton, développer l'expression $(iz + 1)^3$.
- 3. En utilisant les questions précédentes, donner sous forme algébrique les solutions complexes de l'équation

$$iz^3 + 3z^2 - 3iz - 1 + 27i = 0.$$

On définit les applications f, g et h de \mathbb{C} dans \mathbb{C} par

$$f(z) = z^3$$
, $g(z) = iz + 1$ et $h(z) = f \circ g(z)$

pour tout $z \in \mathbb{C}$.

- 4. Quelle est la nature géométrique de l'application g? Déterminer son centre si g est une rotation ou une homothétie.
- 5. (a) Représenter graphiquement le triangle T_1 dont les sommets sont les points de $f^{-1}(\{27i\})$.
 - (b) On note T_2 le triangle dont les sommets sont les points de $h^{-1}(\{27i\})$. Par quelle transformation du plan T_2 est-il obtenu à partir de T_1 ?
 - (c) Représenter graphiquement le triangle T_2 en utilisant (a) et (b).
- 6. On considère le sous-ensemble D de $\mathbb C$ défini par $D=\{z\in\mathbb C|\ \arg(z-i)=-\frac{\pi}{4}(\mathrm{mod}\ 2\pi)\}$. Déterminer g(D), l'image directe de D par g et h(D), l'image directe de D par h. Représenter graphiquement $D,\ g(D)$ et h(D).