Examen du 6 janvier 2012

SECTION C (Cours: T. Joly)

Durée: 3 heures. Sans document, ni calculette, téléphones mobiles éteints et rangés.

Exercice 1.

Déterminer tous les nombres complexes z tels que :

$$z^7 = 64\sqrt{3} + 64i$$
.

Exercice 2.

- 1. On suppose que b est un paramètre dans \mathbb{C} et on considère le polynôme $S_b(X) = X^3 b^3$ de la variable complexe X. Effectuer la division euclidienne de $S_b(X)$ par X b.
- 2. On considère dans la suite le polynôme $P(x) = x^3 3x^2 + 3x 9$. Effectuer la division euclidienne de P(x) par x 1.
- 3. Déduire de la question précédente que P(x) peut s'écrire comme la différence entre deux cubes.
- 4. Déduire des questions précédentes une factorisation de P(x) en un produit de polynômes de degré un à coefficients complexes.

Exercice 3.

Soit les vecteurs $u_1 = (1, 3, 2)$, $u_2 = (2, 4, 0)$, $u_3 = (2, 7, 6)$, $u_4 = (2, 5, 2)$ et $u_5 = (1, 2, 1)$ de l'espace vectoriel \mathbb{R}^3 .

- 1. Soit E un espace vectoriel de dimension finie, donner la définition d'une base de E puis celle de la dimension de E. Quelle est la dimension de \mathbb{R}^3 ?
- 2. La famille de vecteurs (u_2, u_4, u_5) est-elle libre?
- 3. Justifier soigneusement et sans aucun calcul le fait que (u_2, u_4, u_5) est une base de \mathbb{R}^3 . Déterminer les coordonnées du vecteur (1, 1, 3) dans la base (u_2, u_4, u_5) .
- 4. Sans effectuer aucun calcul, déterminer le sous-espace engendré par u_1, u_2, u_3, u_4 et u_5 .

On considère, dans \mathbb{R}^3 , le sous-espace vectoriel $F = \{(a, b, c) \in \mathbb{R}^3 \mid 4a + 2b - 3c = 0\}$ et le sous-espace vectoriel G engendré par les vecteurs u_1, u_2, u_3 et u_4 .

- 5. Déterminer sans faire de calcul si la famille de vecteurs (u_1, u_2, u_3, u_4) est libre.
- 6. Montrer que pour tout vecteur v = (a, b, c) de \mathbb{R}^3 , l'équation vectorielle :

$$x u_1 + y u_2 + z u_3 + t u_4 = v$$

possède (au moins) une solution (x, y, z, t) si et seulement si 4a - 2b + c = 0.

- 7. Peut-on en conclure à l'aide de la question précédente que $G = \{(a, b, c) \in \mathbb{R}^3 \mid 4a 2b + c = 0\}$? Justifier soigneusement la réponse.
- 8. Déterminer la dimension de G et donner une base de G extraite de la famille (u_1, u_2, u_3, u_4) .
- 9. Déterminer une base et la dimension du sous-espace $F \cap G$.

Exercice 4.

- 1. Rappeler la définition précise de la continuité d'une fonction $f: \mathbb{R} \to \mathbb{R}$ en $a \in \mathbb{R}$.
- 2. Donner la définition exacte (en termes de ε) de la formule : $\lim_{x \to +\infty} f(x) = l$, où $l \in \mathbb{R}$.

On considère la fonction $F: \mathbb{R} \to \mathbb{R}$ définie par : $F(x) = e^x + e^{-x}$.

- 3. La fonction F est-elle paire ou impaire ? Etudier les variations de F puis esquisser le graphe de F sur \mathbb{R} .
- 4. Déterminer $\lim_{x \to -\infty} \frac{F(x)}{x}$ et $\lim_{x \to +\infty} \frac{F(x)}{2^x}$.

On note f la restriction de F à $[0, +\infty[$.

- 5. Montrer que l'application f est une bijection de $[0, +\infty[$ sur $[2, +\infty[$ et que l'application réciproque $f^{-1}: [2, +\infty[\to [0, +\infty[$ est continue.
- 6. Montrer que l'application f^{-1} est dérivable sur $[2, +\infty[$. Est-elle dérivable en 2?
- 7. Montrer que pour tout $x \in [0, +\infty[: f'(x) = \sqrt{(f(x) 2)(f(x) + 2)}]$.
- 8. En déduire que la dérivée $(f^{-1})'$ de f^{-1} vérifie pour tout y > 2:

$$(f^{-1})'(y) = \frac{1}{\sqrt{(y-2)(y+2)}}$$
.

Exercice 5.

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{1}{3} (1 + \cos x)$ et la suite $(u_n)_{n \in \mathbb{N}}$ définie par :

$$\left[\begin{array}{l} u_0 = 0 \\ u_{n+1} = f(u_n) \,. \end{array}\right]$$

On note I = [0, 1].

- 1. Montrer que pour tout $x \in I$, $f(x) \in I$ et en déduire que pour tout $n \in \mathbb{N}$, u_n est définie et appartient à I.
- 2. Montrer que l'équation x = f(x) admet une unique solution dans l'intervalle I. On note α ce nombre.
- 3. Montrer, à l'aide de l'inégalité des accroissements finis, que pour tout $n \in \mathbb{N}$: $|u_{n+1} \alpha| \leq \frac{1}{3} |u_n \alpha|$.
- 4. En déduire que pour tout $n \in \mathbb{N}$: $|u_n \alpha| \leq \frac{1}{3^n}$.
- 5. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers α .