Contrôle 2

Mercredi 4 avril 2018

Durée: 1 heure.

Tous les documents sont interdits, ainsi que les calculatrices et les téléphones portables. Les exercices sont indépendants entre eux. Une attention particulière sera portée à la rédaction.

Exercice 1. Déterminer les limites suivantes :

- $-\frac{x^3-8}{x-2}$ lorsque x tend vers 2;
- $\frac{\sqrt{x}-1}{x-1}$ lorsque x tend vers 1;
- $\frac{1}{x} \frac{1}{x^2}$ lorsque x tend vers 0 (par valeur positive);
- $x x^2$ lorsque x tend vers $+\infty$

Exercice 2. On considère les deux polynômes

$$A = X^4 + 2X^3 - X - 2$$
 et $B = X^4 + X^3 + 5X^2 + 4X + 4$.

- Déterminer le plus grand commun diviseur de A et de B à l'aide de l'algorithme d'Euclide.
- En déduire les racines réelles des deux polynômes A et B.
- Quelles sont les racines complexes de ces deux polynômes?

Exercice 3. On posera $E = \mathbb{R}_2[X]$ (espace vectoriel des polynômes de degré au plus 2). Soit P un élément de E. On considère l'application φ qui, à P, associe le polynôme

$$Q = \varphi(P) = 2XP + (1 - X^2)P'$$

(où P' désigne le polynôme dérivé de P).

- Montrer que φ est un endomorphisme de E (application linéaire de E dans E).
- Déterminer la matrice de φ dans la base (canonique) des monômes de E.
- Déterminer le rang de cette matrice. Donner une base de l'image de φ .
- Déterminer le noyau de φ (en donner une base).
- On introduit $Q_1=1-X^2$, $Q_2=1+2X+X^2$ et $Q_3=1-2X+X^2$. Vérifier que le système $\{Q_1,Q_2,Q_3\}$ forme une base de E .
- Trouver la matrice de φ dans cette nouvelle base.

Barème indicatif : Exercice 1 (4 points). Exercice 2 (6=3+1+2 points). Exercice 3 (10=1+2+2+2+1+2 points).